NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1328928
Record Type: Journal
Publication Date: 2022
Pages: 25
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1741-5659
EISSN: N/A
Available Date: N/A
Completeness Based Classification Algorithm: A Novel Approach for Educational Semantic Data Completeness Assessment
Akhrif, Ouidad; Benfaress, Chaymae; EL Jai, Mostapha; El Bouzekri El Idrissi, Youness; Hmina, Nabil
Interactive Technology and Smart Education, v19 n1 p87-111 2022
Purpose: The purpose of this paper is to reveal the smart collaborative learning service. This concept aims to build teams of learners based on the complementarity of their skills, allowing flexible participation and offering interdisciplinary collaboration opportunities for all the learners. The success of this environment is related to predict efficient collaboration between the different teammates, allowing a smartly sharing knowledge in the Smart University environment. Design/methodology/approach: A random forest (RF) approach is proposed, which is based on semantic modelization of the learner and the problem-solving allowing multidisciplinary collaboration, and heuristic completeness processing to build complementary teams. To achieve that, this paper established a Konstanz Information Miner workflow that integrates the main steps for building and evaluating the RF classifier, this workflow is divided into: extracting knowledge from the smart collaborative learning ontology, calculating the completeness using a novel heuristic and building the RF classifier. Findings: The smart collaborative learning service enables efficient collaboration and democratized sharing of knowledge between learners, by using a semantic support decision support system. This service solves a frequent issue related to the composition of learning groups to serve pedagogical perspectives. Originality/value: The present study harmonizes the integration of ontology, a new heuristic processing and supervised machine learning algorithm aiming at building an intelligent collaborative learning service that includes a qualified classifier of complementary teams of learners.
Emerald Publishing Limited. Howard House, Wagon Lane, Bingley, West Yorkshire, BD16 1WA, UK. Tel: +44-1274-777700; Fax: +44-1274-785201; e-mail: emerald@emeraldinsight.com; Web site: http://www.emerald.com/insight
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A