NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 151 to 165 of 318 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ho, Chun-Heng; Zhang, Hang-qin; Li, Juan; Zhang, Min-quan – International Journal of Distance Education Technologies, 2023
Digital education has recently become a mainstream education model. Despite digital education's increasing popularity, there remain issues when it comes to teacher-student interactions in digital space, which have made it impossible for this model to achieve the same teaching quality as traditional in-person education. Compared with other academic…
Descriptors: Technology Uses in Education, Electronic Learning, Teacher Student Relationship, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Duxbury, Scott W. – Sociological Methods & Research, 2023
This study shows that residual variation can cause problems related to scaling in exponential random graph models (ERGM). Residual variation is likely to exist when there are unmeasured variables in a model--even those uncorrelated with other predictors--or when the logistic form of the model is inappropriate. As a consequence, coefficients cannot…
Descriptors: Graphs, Scaling, Research Problems, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Chengyu Cui; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap,…
Descriptors: Item Response Theory, Accuracy, Simulation, Psychometrics
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Jiayi; Andres, Juliana Ma. Alexandra L.; Hutt, Stephen; Baker, Ryan S.; Ocumpaugh, Jaclyn; Nasiar, Nidhi; Mills, Caitlin; Brooks, Jamiella; Sethuaman, Sheela; Young, Tyron – Journal of Educational Data Mining, 2022
Self-regulated learning (SRL) is a critical component of mathematics problem-solving. Students skilled in SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive process so that they align their efforts with their objectives. An influential framework for SRL, the SMART model (Winne, 2017),…
Descriptors: Problem Solving, Mathematics Instruction, Learning Management Systems, Learning Analytics
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making
Jennifer Hu – ProQuest LLC, 2023
Language is one of the hallmarks of intelligence, demanding explanation in a theory of human cognition. However, language presents unique practical challenges for quantitative empirical research, making many linguistic theories difficult to test at naturalistic scales. Artificial neural network language models (LMs) provide a new tool for studying…
Descriptors: Linguistic Theory, Computational Linguistics, Models, Language Research
Peer reviewed Peer reviewed
Direct linkDirect link
Anika Alam; A. Brooks Bowden – Society for Research on Educational Effectiveness, 2024
Background: The importance of high school completion for jobs and postsecondary opportunities is well- documented. Combined with federal laws where high school graduation rate is a core performance indicator, school systems and states face pressure to actively monitor and assess high school completion. This proposal employs machine learning…
Descriptors: Dropout Characteristics, Prediction, Artificial Intelligence, At Risk Students
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Robert H. Kosar – ProQuest LLC, 2017
Principal component analysis is an important statistical technique for dimension reduction and exploratory data analysis. However, it is not robust to outliers and may obfuscate important data structure such as clustering. We propose a version of principal component analysis based on the robust L2E method. The technique seeks to find the principal…
Descriptors: Research Universities, Taxonomy, Multivariate Analysis, Factor Analysis
Maria-Dorinela Dascalu; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2022
The use of technology as a facilitator in learning environments has become increasingly prevalent with the global pandemic caused by COVID-19. As such, computer-supported collaborative learning (CSCL) gains a wider adoption in contrast to traditional learning methods. At the same time, the need for automated tools capable of assessing and…
Descriptors: Computational Linguistics, Longitudinal Studies, Technology Uses in Education, Teaching Methods
Natesan, Prathiba; Hedges, Larry V. – Grantee Submission, 2016
Although immediacy is one of the necessary criteria to show strong evidence of a causal relation in SCDs, no inferential statistical tool is currently used to demonstrate it. We propose a Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. Unlike visual analysis that considers only 3-5 observations in…
Descriptors: Bayesian Statistics, Statistical Inference, Research Design, Models
Pages: 1  |  ...  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  ...  |  22