Publication Date
In 2025 | 12 |
Since 2024 | 61 |
Since 2021 (last 5 years) | 170 |
Since 2016 (last 10 years) | 270 |
Since 2006 (last 20 years) | 616 |
Descriptor
Source
Author
Publication Type
Education Level
Location
Australia | 11 |
Germany | 11 |
Spain | 8 |
Netherlands | 7 |
Brazil | 6 |
China | 6 |
South Korea | 6 |
Canada | 5 |
Italy | 5 |
France | 4 |
Israel | 4 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tal Ness; Valerie J. Langlois; Albert E. Kim; Jared M. Novick – Perspectives on Psychological Science, 2025
Understanding language requires readers and listeners to cull meaning from fast-unfolding messages that often contain conflicting cues pointing to incompatible ways of interpreting the input (e.g., "The cat was chased by the mouse"). This article reviews mounting evidence from multiple methods demonstrating that cognitive control plays…
Descriptors: Cognitive Ability, Language Processing, Psycholinguistics, Cues
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Bulut, Okan; Yildirim-Erbasli, Seyma Nur – International Journal of Assessment Tools in Education, 2022
Reading comprehension is one of the essential skills for students as they make a transition from learning to read to reading to learn. Over the last decade, the increased use of digital learning materials for promoting literacy skills (e.g., oral fluency and reading comprehension) in K-12 classrooms has been a boon for teachers. However, instant…
Descriptors: Reading Comprehension, Natural Language Processing, Artificial Intelligence, Automation
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation
Huteng Dai – ProQuest LLC, 2024
In this dissertation, I establish a research program that uses computational modeling as a testbed for theories of phonological learning. This dissertation focuses on a fundamental question: how do children acquire sound patterns from noisy, real-world data, especially in the presence of lexical exceptions that defy regular patterns? For instance,…
Descriptors: Phonology, Language Acquisition, Computational Linguistics, Linguistic Theory
Thornton, Chris – Cognitive Science, 2021
Semantic composition in language must be closely related to semantic composition in thought. But the way the two processes are explained differs considerably. Focusing primarily on propositional content, language theorists generally take semantic composition to be a truth-conditional process. Focusing more on extensional content, cognitive…
Descriptors: Semantics, Cognitive Processes, Linguistic Theory, Language Usage
Haffenden, Chris; Fano, Elena; Malmsten, Martin; Börjeson, Love – College & Research Libraries, 2023
How can novel AI techniques be made and put to use in the library? Combining methods from data and library science, this article focuses on Natural Language Processing technologies, especially in national libraries. It explains how the National Library of Sweden's collections enabled the development of a new BERT language model for Swedish. It…
Descriptors: Foreign Countries, Artificial Intelligence, Models, Languages
Jeon, Jaeho; Lee, Seongyong – Education and Information Technologies, 2023
Artificial Intelligence (AI) is developing in a manner that blurs the boundaries between specific areas of application and expands its capability to be used in a wide range of applications. The public release of ChatGPT, a generative AI chatbot powered by a large language model (LLM), represents a significant step forward in this direction.…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Models
Rashid, M. Parvez; Xiao, Yunkai; Gehringer, Edward F. – International Educational Data Mining Society, 2022
Peer assessment can be a more effective pedagogical method when reviewers provide quality feedback. But what makes feedback helpful to reviewees? Other studies have identified quality feedback as focusing on detecting problems, providing suggestions, or pointing out where changes need to be made. However, it is important to seek students'…
Descriptors: Peer Evaluation, Feedback (Response), Natural Language Processing, Artificial Intelligence
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Ryan Daniel Budnick – ProQuest LLC, 2023
The past thirty years have shown a rise in models of language acquisition in which the state of the learner is characterized as a probability distribution over a set of non-stochastic grammars. In recent years, increasingly powerful models have been constructed as earlier models have failed to generalize well to increasingly complex and realistic…
Descriptors: Grammar, Feedback (Response), Algorithms, Computational Linguistics
Dragos Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2023
Reading comprehension is essential for both knowledge acquisition and memory reinforcement. Automated modeling of the comprehension process provides insights into the efficacy of specific texts as learning tools. This paper introduces an improved version of the Automated Model of Comprehension, version 3.0 (AMoC v3.0). AMoC v3.0 is based on two…
Descriptors: Reading Comprehension, Models, Concept Mapping, Graphs
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Brehm, Laurel; Cho, Pyeong Whan; Smolensky, Paul; Goldrick, Matthew A. – Cognitive Science, 2022
Subject-verb agreement errors are common in sentence production. Many studies have used experimental paradigms targeting the production of subject-verb agreement from a sentence preamble ("The key to the cabinets") and eliciting verb errors (… "*were shiny"). Through reanalysis of previous data (50 experiments; 102,369…
Descriptors: Sentences, Sentence Structure, Grammar, Verbs