Publication Date
| In 2026 | 0 |
| Since 2025 | 23 |
| Since 2022 (last 5 years) | 177 |
| Since 2017 (last 10 years) | 446 |
| Since 2007 (last 20 years) | 1153 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Practitioners | 46 |
| Researchers | 46 |
| Teachers | 18 |
| Administrators | 11 |
| Policymakers | 9 |
| Counselors | 3 |
| Students | 3 |
| Media Staff | 2 |
| Parents | 1 |
Location
| Australia | 28 |
| United States | 25 |
| Germany | 22 |
| United Kingdom | 22 |
| Canada | 17 |
| Sweden | 17 |
| California | 16 |
| Turkey | 16 |
| China | 15 |
| Florida | 15 |
| Spain | 14 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Erik Forsberg; Anders Sjöberg – Measurement: Interdisciplinary Research and Perspectives, 2025
This paper reports a validation study based on descriptive multidimensional item response theory (DMIRT), implemented in the R package "D3mirt" by using the ERS-C, an extended version of the Relevance subscale from the Moral Foundations Questionnaire including two new items for collectivism (17 items in total). Two latent models are…
Descriptors: Evaluation Methods, Programming Languages, Altruism, Collectivism
Stephanie Fuchs; Alexandra Werth; Cristóbal Méndez; Jonathan Butcher – Journal of Engineering Education, 2025
Background: High-quality feedback is crucial for academic success, driving student motivation and engagement while research explores effective delivery and student interactions. Advances in artificial intelligence (AI), particularly natural language processing (NLP), offer innovative methods for analyzing complex qualitative data such as feedback…
Descriptors: Artificial Intelligence, Training, Data Analysis, Natural Language Processing
Lee, Chansoon – Educational Measurement: Issues and Practice, 2022
Appropriate placement into courses at postsecondary institutions is critical for the success of students in terms of retention and graduation rates. To reduce the number of students who are misplaced, using multiple measures in placing students is encouraged. However, in practice most postsecondary schools utilize only a few measures to determine…
Descriptors: Classification, Models, Student Placement, College Students
Lepori, Benedetto – Studies in Higher Education, 2022
Classifications are a basic tool for research, which allow summarizing the diversity of objects in a number of categories that fits the cognitive abilities of the human mind. Their relevance for higher education is emphasized by the differentiation of institutional profiles. Yet, unlike in the US, there is currently no classification of European…
Descriptors: Foreign Countries, Higher Education, Classification, Specialization
Jihong Zhang – ProQuest LLC, 2022
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Cassiday, Kristina R.; Cho, Youngmi; Harring, Jeffrey R. – Educational and Psychological Measurement, 2021
Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth…
Descriptors: Probability, Models, Simulation, Mathematics
Westera, Matthijs; Gupta, Abhijeet; Boleda, Gemma; Padó, Sebastian – Cognitive Science, 2021
Cognitive scientists have long used distributional semantic representations of categories. The predominant approach uses distributional representations of category-denoting nouns, such as "city" for the category city. We propose a novel scheme that represents categories as prototypes over representations of names of its members, such as…
Descriptors: Classification, Models, Nouns, Cognitive Processes
Luke Strickland; Simon Farrell; Micah K. Wilson; Jack Hutchinson; Shayne Loft – Cognitive Research: Principles and Implications, 2024
In a range of settings, human operators make decisions with the assistance of automation, the reliability of which can vary depending upon context. Currently, the processes by which humans track the level of reliability of automation are unclear. In the current study, we test cognitive models of learning that could potentially explain how humans…
Descriptors: Automation, Reliability, Man Machine Systems, Learning Processes
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Meriem Zerkouk; Miloud Mihoubi; Belkacem Chikhaoui; Shengrui Wang – Education and Information Technologies, 2024
School dropout is a significant issue in distance learning, and early detection is crucial for addressing the problem. Our study aims to create a binary classification model that anticipates students' activity levels based on their current achievements and engagement on a Canadian Distance learning Platform. Predicting student dropout, a common…
Descriptors: Artificial Intelligence, Dropouts, Prediction, Distance Education
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Kimberly L. Henry; Linda R. Stanley; Randall C. Swaim – Prevention Science, 2024
Reservation-dwelling American Indian adolescents are at exceedingly high risk for cannabis use. Prevention initiatives to delay the onset and escalation of use are needed. The risk and promotive factors approach to substance use prevention is a well-established framework for identifying the timing and targets for prevention initiatives. This study…
Descriptors: Risk, Marijuana, Drug Use, American Indians
Jiang, Shiyan; Tang, Hengtao; Tatar, Cansu; Rosé, Carolyn P.; Chao, Jie – Learning, Media and Technology, 2023
It's critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through…
Descriptors: Artificial Intelligence, High School Students, Models, Classification
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Ilagan, Michael John; Falk, Carl F. – Educational and Psychological Measurement, 2023
Administering Likert-type questionnaires to online samples risks contamination of the data by malicious computer-generated random responses, also known as bots. Although nonresponsivity indices (NRIs) such as person-total correlations or Mahalanobis distance have shown great promise to detect bots, universal cutoff values are elusive. An initial…
Descriptors: Likert Scales, Questionnaires, Artificial Intelligence, Identification

Peer reviewed
Direct link
