Publication Date
| In 2026 | 1 |
| Since 2025 | 28 |
| Since 2022 (last 5 years) | 107 |
| Since 2017 (last 10 years) | 153 |
| Since 2007 (last 20 years) | 199 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Researchers | 2 |
| Administrators | 1 |
| Students | 1 |
| Teachers | 1 |
Location
| Brazil | 6 |
| Australia | 4 |
| China | 4 |
| Germany | 4 |
| Japan | 3 |
| Netherlands | 3 |
| Pennsylvania | 3 |
| South Korea | 3 |
| Spain | 3 |
| Turkey | 3 |
| Czech Republic | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Mead, Alan D.; Zhou, Chenxuan – Journal of Applied Testing Technology, 2022
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom's taxonomy level of the items. We addressed five research questions, showing that reasonably good prediction of Bloom's level was possible, but accuracy varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified…
Descriptors: Artificial Intelligence, Prediction, Taxonomy, Natural Language Processing
Bima Sapkota; Liza Bondurant – International Journal of Technology in Education, 2024
In November 2022, ChatGPT, an Artificial Intelligence (AI) large language model (LLM) capable of generating human-like responses, was launched. ChatGPT has a variety of promising applications in education, such as using it as thought-partner in generating curricular resources. However, scholars also recognize that the use of ChatGPT raises…
Descriptors: Cognitive Processes, Difficulty Level, Artificial Intelligence, Natural Language Processing
Wai Tong Chor; Kam Meng Goh; Li Li Lim; Kin Yun Lum; Tsung Heng Chiew – Education and Information Technologies, 2024
The programme outcomes are broad statements of knowledge, skills, and competencies that the students should be able to demonstrate upon graduation from a programme, while the Educational Taxonomy classifies learning objectives into different domains. The precise mapping of a course outcomes to the programme outcome and the educational taxonomy…
Descriptors: Artificial Intelligence, Engineering Education, Taxonomy, Educational Objectives
Emerson, Andrew; Min, Wookhee; Azevedo, Roger; Lester, James – British Journal of Educational Technology, 2023
Game-based learning environments hold significant promise for facilitating learning experiences that are both effective and engaging. To support individualised learning and support proactive scaffolding when students are struggling, game-based learning environments should be able to accurately predict student knowledge at early points in students'…
Descriptors: Game Based Learning, Natural Language Processing, Prediction, Student Evaluation
Binh Nguyen Thanh; Diem Thi Hong Vo; Minh Nguyen Nhat; Thi Thu Tra Pham; Hieu Thai Trung; Son Ha Xuan – Australasian Journal of Educational Technology, 2023
In this study, we introduce a framework designed to help educators assess the effectiveness of popular generative artificial intelligence (AI) tools in solving authentic assessments. We employed Bloom's taxonomy as a guiding principle to create authentic assessments that evaluate the capabilities of generative AI tools. We applied this framework…
Descriptors: Artificial Intelligence, Models, Performance Based Assessment, Economics Education
Peter Organisciak; Selcuk Acar; Denis Dumas; Kelly Berthiaume – Grantee Submission, 2023
Automated scoring for divergent thinking (DT) seeks to overcome a key obstacle to creativity measurement: the effort, cost, and reliability of scoring open-ended tests. For a common test of DT, the Alternate Uses Task (AUT), the primary automated approach casts the problem as a semantic distance between a prompt and the resulting idea in a text…
Descriptors: Automation, Computer Assisted Testing, Scoring, Creative Thinking
Kim, Min Kyu; Gaul, Cassandra J.; Kim, So Mi; Madathany, Reeny J. – Technology, Knowledge and Learning, 2020
While key concepts embedded within an expert's textual explanation have been considered an aspect of expert model, the complexity of textual data makes determining key concepts demanding and time consuming. To address this issue, we developed Student Mental Model Analyzer for Teaching and Learning (SMART) technology that can analyze an experts'…
Descriptors: Natural Language Processing, Educational Technology, Concept Mapping, Accuracy
Emiko Tsutsumi; Yiming Guo; Ryo Kinoshita; Maomi Ueno – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Academic Ability, Intelligent Tutoring Systems, Artificial Intelligence
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Razvan Paroiu; Stefan Ruseti; Mihai Dascalu; Stefan Trausan-Matu; Danielle S. McNamara – Grantee Submission, 2023
The exponential growth of scientific publications increases the effort required to identify relevant articles. Moreover, the scale of studies is a frequent barrier to research as the majority of studies are low or medium-scaled and do not generalize well while lacking statistical power. As such, we introduce an automated method that supports the…
Descriptors: Science Education, Educational Research, Scientific and Technical Information, Journal Articles
Hao Wu; Shan Li; Ying Gao; Jinta Weng; Guozhu Ding – Education and Information Technologies, 2024
Natural language processing (NLP) has captivated the attention of educational researchers over the past three decades. In this study, a total of 2,480 studies were retrieved through a comprehensive literature search. We used neural topic modeling and pre-trained language modeling to explore the research topics pertaining to the application of NLP…
Descriptors: Natural Language Processing, Educational Research, Research Design, Educational Trends
Jacob Whitehill; Jennifer LoCasale-Crouch – Journal of Educational Data Mining, 2024
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate "Instructional Support" domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning…
Descriptors: Artificial Intelligence, Teacher Evaluation, Models, Transcripts (Written Records)
Gombert, Sebastian; Di Mitri, Daniele; Karademir, Onur; Kubsch, Marcus; Kolbe, Hannah; Tautz, Simon; Grimm, Adrian; Bohm, Isabell; Neumann, Knut; Drachsler, Hendrik – Journal of Computer Assisted Learning, 2023
Background: Formative assessments are needed to enable monitoring how student knowledge develops throughout a unit. Constructed response items which require learners to formulate their own free-text responses are well suited for testing their active knowledge. However, assessing such constructed responses in an automated fashion is a complex task…
Descriptors: Coding, Energy, Scientific Concepts, Formative Evaluation
Garman, Andrew N.; Erwin, Taylor S.; Garman, Tyler R.; Kim, Dae Hyun – Journal of Competency-Based Education, 2021
Background: Competency models provide useful frameworks for organizing learning and assessment programs, but their construction is both time intensive and subject to perceptual biases. Some aspects of model development may be particularly well-suited to automation, specifically natural language processing (NLP), which could also help make them…
Descriptors: Natural Language Processing, Automation, Guidelines, Leadership Effectiveness
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education

Peer reviewed
Direct link
