Publication Date
| In 2026 | 0 |
| Since 2025 | 15 |
| Since 2022 (last 5 years) | 132 |
| Since 2017 (last 10 years) | 201 |
| Since 2007 (last 20 years) | 204 |
Descriptor
Source
Author
| Baker, Ryan S. | 8 |
| Xia, Xiaona | 4 |
| Amisha Jindal | 3 |
| Ashish Gurung | 3 |
| Barnes, Tiffany | 3 |
| Chi, Min | 3 |
| Erin Ottmar | 3 |
| Gaševic, Dragan | 3 |
| Hutt, Stephen | 3 |
| Ji-Eun Lee | 3 |
| Paquette, Luc | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Students | 1 |
Location
| Australia | 5 |
| China | 4 |
| Netherlands | 3 |
| South Korea | 3 |
| California (Stanford) | 2 |
| Canada | 2 |
| Estonia | 2 |
| Japan | 2 |
| Massachusetts | 2 |
| Spain | 2 |
| Thailand | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 2 |
| Test of English for… | 2 |
| Education Longitudinal Study… | 1 |
| Motivated Strategies for… | 1 |
| Patterns of Adaptive Learning… | 1 |
| Program for the International… | 1 |
What Works Clearinghouse Rating
Mutimukwe, Chantal; Viberg, Olga; Oberg, Lena-Maria; Cerratto-Pargman, Teresa – British Journal of Educational Technology, 2022
Understanding students' privacy concerns is an essential first step toward effective privacy-enhancing practices in learning analytics (LA). In this study, we develop and validate a model to explore the students' privacy concerns (SPICE) regarding LA practice in higher education. The SPICE model considers "privacy concerns" as a central…
Descriptors: Privacy, Learning Analytics, Student Attitudes, College Students
Brown, Alice; Lawrence, Jill; Basson, Marita; Redmond, Petrea – Higher Education Research and Development, 2022
Student engagement is consistently identified as a key predictor of learner outcomes within the online learning environment. However, there is limited guidance about using proactive strategies to improve engagement for low and non-engaged students: for example by specifically employing course learning analytics (CLA) and nudging strategies in…
Descriptors: Electronic Learning, Learner Engagement, Instructional Improvement, College Instruction
Siew, Cynthia S. Q. – Journal of Learning Analytics, 2022
This commentary discusses how research approaches from Cognitive Network Science can be of relevance to research in the field of Learning Analytics, with a focus on modelling the knowledge representations of learners and students as a network of interrelated concepts. After providing a brief overview of research in Cognitive Network Science, I…
Descriptors: Network Analysis, Learning Analytics, Cognitive Processes, Knowledge Level
Christhilf, Katerina; Newton, Natalie; Butterfuss, Reese; McCarthy, Kathryn S.; Allen, Laura K.; Magliano, Joseph P.; McNamara, Danielle S. – International Educational Data Mining Society, 2022
Prompting students to generate constructed responses as they read provides a window into the processes and strategies that they use to make sense of complex text. In this study, Markov models examined the extent to which: (1) patterns of strategies; and (2) strategy combinations could be used to inform computational models of students' text…
Descriptors: Markov Processes, Reading Strategies, Reading Comprehension, Models
The Choice between Cognitive Diagnosis and Item Response Theory: A Case Study from Medical Education
Youn Seon Lim; Catherine Bangeranye – International Journal of Testing, 2024
Feedback is a powerful instructional tool for motivating learning. But effective feedback, requires that instructors have accurate information about their students' current knowledge status and their learning progress. In modern educational measurement, two major theoretical perspectives on student ability and proficiency can be distinguished.…
Descriptors: Cognitive Measurement, Diagnostic Tests, Item Response Theory, Case Studies
Mohd Fazil; Angelica Rísquez; Claire Halpin – Journal of Learning Analytics, 2024
Technology-enhanced learning supported by virtual learning environments (VLEs) facilitates tutors and students. VLE platforms contain a wealth of information that can be used to mine insight regarding students' learning behaviour and relationships between behaviour and academic performance, as well as to model data-driven decision-making. This…
Descriptors: Learning Analytics, Learning Management Systems, Learning Processes, Decision Making
Bull, Susan – International Journal of Artificial Intelligence in Education, 2021
For the special issue of the International Journal of Artificial Intelligence in Education dedicated to the memory of Jim Greer, this paper highlights some of Jim's extensive and always-timely contributions to the field: from his early AI-focussed research on intelligent tutoring systems, through a variety of applications deployed to support…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Educational Research, College Students
Zhun Deng – ProQuest LLC, 2021
Machine learning has achieved state-of-the-art performance in many areas, including image recognition and natural language processing. However, there are still many challenges and mysteries attracting numerous researchers. This dissertation comprises a series of works concerning problems at the intersection of computer science theory, adversarial…
Descriptors: Learning Analytics, Instructional Design, Artificial Intelligence, Computer Science
Tzeng, Jian-Wei; Lee, Chia-An; Huang, Nen-Fu; Huang, Hao-Hsuan; Lai, Chin-Feng – International Review of Research in Open and Distributed Learning, 2022
Massive open online courses (MOOCs) are open access, Web-based courses that enroll thousands of students. MOOCs deliver content through recorded video lectures, online readings, assessments, and both student-student and student-instructor interactions. Course designers have attempted to evaluate the experiences of MOOC participants, though due to…
Descriptors: Online Courses, Models, Learning Analytics, Artificial Intelligence
Prediction of Students' Early Dropout Based on Their Interaction Logs in Online Learning Environment
Mubarak, Ahmed A.; Cao, Han; Zhang, Weizhen – Interactive Learning Environments, 2022
Online learning has become more popular in higher education since it adds convenience and flexibility to students' schedule. But, it has faced difficulties in the retention of the continuity of students and ensure continual growth in course. Dropout is a concerning factor in online course continuity. Therefore, it has sparked great interest among…
Descriptors: Prediction, Dropouts, Interaction, Learning Analytics
Wang, Han; Huang, Tao; Tian, Jun; Yang, Huali; Han, Pengdong – Best Evidence in Chinese Education, 2022
In the age of Internet Plus, the deep integration of information technology into education and individualized instruction have become a growing trend in education development. Self-regulated learning is a key element of student core competence, but easy to be overlooked in basic education. The purpose of this study is to establish the data…
Descriptors: Elementary School Students, Scaffolding (Teaching Technique), Learning Strategies, Models
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Construction and Analysis of a Decision Tree-Based Predictive Model for Learning Intervention Advice
Chenglong Wang – Turkish Online Journal of Educational Technology - TOJET, 2024
The rapid development of education informatization has accumulated a large amount of data for learning analytics, and adopting educational data mining to find new patterns of data, develop new algorithms and models, and apply known predictive models to the teaching system to improve learning is the challenge and vision of the education field in…
Descriptors: Decision Making, Prediction, Models, Intervention
Emily K. Toutkoushian; Kihyun Ryoo – Measurement: Interdisciplinary Research and Perspectives, 2024
The Next Generation Science Standards (NGSS) delineate three interrelated dimensions that describe what students should know and how they should engage in science learning. These present significant challenges for assessment because traditional assessments may not be able to capture the ways in which students engage with content. Science…
Descriptors: Middle School Students, Academic Standards, Science Education, Learner Engagement
Chen, Fu; Cui, Ying – Journal of Educational Data Mining, 2020
Effective learning outcome modeling is crucial to the success of learning evaluation in education. In the digital age, the movement towards online learning and computerized assessments has resulted in an explosion of structured and unstructured educational data (e.g., learners' problem-solving process data), which offers new opportunities for…
Descriptors: Models, Outcomes of Education, Data Analysis, Psychometrics

Peer reviewed
Direct link
