Publication Date
In 2025 | 271 |
Since 2024 | 1582 |
Since 2021 (last 5 years) | 6274 |
Since 2016 (last 10 years) | 15372 |
Since 2006 (last 20 years) | 38011 |
Descriptor
Models | 85564 |
Foreign Countries | 14613 |
Higher Education | 13269 |
Teaching Methods | 8910 |
Elementary Secondary Education | 7997 |
Evaluation Methods | 5074 |
Educational Change | 4309 |
Comparative Analysis | 4189 |
Program Evaluation | 4126 |
Academic Achievement | 4093 |
College Students | 4015 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Practitioners | 4307 |
Teachers | 2059 |
Researchers | 1587 |
Administrators | 1116 |
Policymakers | 728 |
Counselors | 301 |
Students | 199 |
Community | 132 |
Media Staff | 128 |
Parents | 95 |
Support Staff | 62 |
More ▼ |
Location
Australia | 1660 |
Canada | 1301 |
United States | 1125 |
United Kingdom | 1120 |
California | 852 |
United Kingdom (England) | 673 |
China | 640 |
Germany | 565 |
Turkey | 527 |
Texas | 488 |
Netherlands | 470 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 23 |
Meets WWC Standards with or without Reservations | 38 |
Does not meet standards | 35 |
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Steffen Nestler; Sarah Humberg – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Several variants of the autoregressive structural equation model were suggested over the past years, including, for example, the random intercept autoregressive panel model, the latent curve model with structured residuals, and the STARTS model. The present work shows how to place these models into a mixed-effects model framework and how to…
Descriptors: Structural Equation Models, Computer Software, Models, Measurement
Ruoxuan Li; Lijuan Wang – Grantee Submission, 2024
Causal-formative indicators are often used in social science research. To achieve identification in causal-formative indicator modeling, constraints need to be applied. A conventional method is to constrain the weight of a formative indicator to be 1. The selection of which indicator to have the fixed weight, however, may influence statistical…
Descriptors: Social Science Research, Causal Models, Formative Evaluation, Measurement
Kelvin T. Afolabi; Timothy R. Konold – Practical Assessment, Research & Evaluation, 2024
Exploratory structural equation (ESEM) has received increased attention in the methodological literature as a promising tool for evaluating latent variable measurement models. It overcomes many of the limitations attached to exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), while capitalizing on the benefits of each. Given…
Descriptors: Measurement Techniques, Factor Analysis, Structural Equation Models, Comparative Analysis
Hyemin Han; Kelsie J. Dawson – Journal of Moral Education, 2024
In the present study, we examined how the perceived attainability and relatability of moral exemplars predicted moral elevation and pleasantness among both adult and college student participants. Data collected from two experiments were analyzed with Bayesian multilevel modeling to explore which factors significantly predicted outcome variables at…
Descriptors: Moral Values, Prediction, Models, Behavior Patterns
W. Holmes Finch – Educational and Psychological Measurement, 2024
Dominance analysis (DA) is a very useful tool for ordering independent variables in a regression model based on their relative importance in explaining variance in the dependent variable. This approach, which was originally described by Budescu, has recently been extended to use with structural equation models examining relationships among latent…
Descriptors: Models, Regression (Statistics), Structural Equation Models, Predictor Variables
Tenko Raykov; Christine DiStefano; Natalja Menold – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This article is concerned with the assumption of linear temporal development that is often advanced in structural equation modeling-based longitudinal research. The linearity hypothesis is implemented in particular in the popular intercept-and-slope model as well as in more general models containing it as a component, such as longitudinal…
Descriptors: Structural Equation Models, Hypothesis Testing, Longitudinal Studies, Research Methodology
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Yusuf Uzun; Mehmet Kayrici – Journal of Education in Science, Environment and Health, 2025
In this study, which focuses on selecting the material and predicting its mechanical behaviors in materials science, an Artificial Neural Network (ANN) was used to predict and simulate the low-speed impact effects of hybrid nano-doped aramid composites. There are not enough studies about open education practices in this field. Since error values…
Descriptors: Artificial Intelligence, Open Education, Energy, Models
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Nargiza Mikhridinova; Carsten Wolff; Wim Van Petegem – Education and Information Technologies, 2024
An individual competence is one of the main human resources, which enables a person to operate in everyday life. A competence profile, formally captured and described as a structured model, may enable various operations, e.g., a more precise evaluation and closure of a training gap. Such application scenarios supported by information systems are…
Descriptors: Taxonomy, Competence, Models, Profiles
Daniel B. Wright – Open Education Studies, 2024
Pearson's correlation is widely used to test for an association between two variables and also forms the basis of several multivariate statistical procedures including many latent variable models. Spearman's [rho] is a popular alternative. These procedures are compared with ranking the data and then applying the inverse normal transformation, or…
Descriptors: Models, Simulation, Statistical Analysis, Correlation
David Williamson Shaffer; Yeyu Wang; Andrew Ruis – Journal of Learning Analytics, 2025
Learning is a multimodal process, and learning analytics (LA) researchers can readily access rich learning process data from multiple modalities, including audio-video recordings or transcripts of in-person interactions; logfiles and messages from online activities; and biometric measurements such as eye-tracking, movement, and galvanic skin…
Descriptors: Learning Processes, Learning Analytics, Models, Data
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Anna McAllister; Mark McCartney; David H. Glass – International Journal of Mathematical Education in Science and Technology, 2024
Discrete time models, one linear and one non-linear, are investigated, both with a herbivore species that consumes a basal food source species. Results are presented for coexistence of the species and to illustrate chaotic behaviour as parameters are varied in the non-linear model. The results indicate the benefit of fertilization in terms of the…
Descriptors: Lesson Plans, Mathematics Activities, Mathematics Instruction, Mathematical Models