Publication Date
In 2025 | 3 |
Since 2024 | 19 |
Since 2021 (last 5 years) | 79 |
Since 2016 (last 10 years) | 206 |
Since 2006 (last 20 years) | 392 |
Descriptor
Source
Author
Koedinger, Kenneth R. | 13 |
Aleven, Vincent | 8 |
Baker, Ryan S. | 8 |
McLaren, Bruce M. | 8 |
Stamper, John | 8 |
Heffernan, Neil T. | 6 |
McNamara, Danielle S. | 6 |
Albacete, Patricia | 5 |
Bull, Susan | 5 |
Chi, Min | 5 |
Gross, Markus | 5 |
More ▼ |
Publication Type
Education Level
Audience
Practitioners | 22 |
Teachers | 14 |
Researchers | 12 |
Policymakers | 5 |
Administrators | 4 |
Students | 2 |
Community | 1 |
Counselors | 1 |
Location
Pennsylvania | 10 |
Australia | 9 |
Massachusetts | 8 |
United Kingdom | 8 |
California | 7 |
Brazil | 6 |
Canada | 6 |
China | 6 |
Florida | 6 |
Germany | 6 |
Greece | 6 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 2 |
Coronavirus Aid Relief and… | 1 |
Elementary and Secondary… | 1 |
Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 2 |
Zhu, Xinhua; Wu, Han; Zhang, Lanfang – IEEE Transactions on Learning Technologies, 2022
Automatic short-answer grading (ASAG) is a key component of intelligent tutoring systems. Deep learning is an advanced method to deal with recognizing textual entailment tasks in an end-to-end manner. However, deep learning methods for ASAG still remain challenging mainly because of the following two major reasons: (1) high-precision scoring…
Descriptors: Intelligent Tutoring Systems, Grading, Automation, Models
Danielle Kearns-Sixsmith – Mentoring & Tutoring: Partnership in Learning, 2024
Tutoring promotes student achievement, academic independence, and the reduction of anxiety. While ample studies support tutoring for enhancing student success, few address how to evaluate tutoring. This quandary led to research in building and testing a meta-model that identified the hallmarks of one-on-one high-quality online tutoring.…
Descriptors: Electronic Learning, Tutoring, Higher Education, Educational Quality
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Albornoz-De Luise, Romina Soledad; Arevalillo-Herraez, Miguel; Arnau, David – IEEE Transactions on Learning Technologies, 2023
In this article, we analyze the potential of conversational frameworks to support the adaptation of existing tutoring systems to a natural language form of interaction. We have based our research on a pilot study, in which the open-source machine learning framework Rasa has been used to build a conversational agent that interacts with an existing…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Models
Liqing Qiu; Lulu Wang – IEEE Transactions on Education, 2025
In recent years, knowledge tracing (KT) within intelligent tutoring systems (ITSs) has seen rapid development. KT aims to assess a student's knowledge state based on past performance and predict the correctness of the next question. Traditional KT often treats questions with different difficulty levels of the same concept as identical…
Descriptors: Intelligent Tutoring Systems, Technology Uses in Education, Questioning Techniques, Student Evaluation
MacLellan, Christopher J.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2022
Intelligent tutoring systems are effective for improving students' learning outcomes (Pane et al. 2013; Koedinger and Anderson, "International Journal of Artificial Intelligence in Education," 8, 1-14, 1997; Bowen et al. "Journal of Policy Analysis and Management," 1, 94-111 2013). However, constructing tutoring systems that…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Instructional Design
Priti Oli – ProQuest LLC, 2024
This dissertation focuses on strategies and techniques to enhance code comprehension skills among students enrolled in introductory computer science courses (CS1 and CS2). We propose a novel tutoring system, "DeepCodeTutor," designed to improve the code comprehension abilities of novices. DeepCodeTutor employs scaffolded self-explanation…
Descriptors: Reading Comprehension, Tutoring, Scaffolding (Teaching Technique), Automation
Yu Lu; Deliang Wang; Penghe Chen; Zhi Zhang – IEEE Transactions on Learning Technologies, 2024
Amid the rapid evolution of artificial intelligence (AI), the intricate model structures and opaque decision-making processes of AI-based systems have raised the trustworthy issues in education. We, therefore, first propose a novel three-layer knowledge tracing model designed to address trustworthiness for an intelligent tutoring system. Each…
Descriptors: Models, Intelligent Tutoring Systems, Artificial Intelligence, Technology Uses in Education
Huang, Tao; Hu, Shengze; Yang, Huali; Geng, Jing; Liu, Sannyuya; Zhang, Hao; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
The global outbreak of the new coronavirus epidemic has promoted the development of intelligent education and the utilization of online learning systems. In order to provide students with intelligent services, such as cognitive diagnosis and personalized exercises recommendation, a fundamental task is the concept tagging for exercises, which…
Descriptors: Educational Technology, Prediction, Electronic Learning, Intelligent Tutoring Systems
Galafassi, Cristiano; Galafassi, Fabiane Flores Penteado; Vicari, Rosa Maria; Reategui, Eliseo Berni – International Journal of Artificial Intelligence in Education, 2023
This work presents the intelligent tutoring system, EvoLogic, developed to assist students in problems of natural production in propositional logic. EvoLogic has been modeled as a multiagent system composed of three autonomous agents: interface, pedagogical and specialist agents. It supports pedagogical strategies inspired by the theory of…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Models, Teaching Methods
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Felipe de Morais; Patricia A. Jaques – IEEE Transactions on Learning Technologies, 2024
Emotion detection through sensors is intrusive and expensive, making it impractical for many educational settings. As an alternative, sensor-free affect detection, which relies solely on interaction log data for machine learning models, has been explored. However, sensor-free emotion detectors have not significantly improved performance when…
Descriptors: Psychological Patterns, Personality Traits, Artificial Intelligence, Models
Hyeon-Ah Kang; Adam Sales; Tiffany A. Whittaker – Grantee Submission, 2023
Increasing use of intelligent tutoring systems in education calls for analytic methods that can unravel students' learning behaviors. In this study, we explore a latent variable modeling approach for tracking learning flow during computer-interactive artificial tutoring. The study considers three models that give discrete profiles of a latent…
Descriptors: Intelligent Tutoring Systems, Algebra, Educational Technology, Learning Processes
Seana Chaves; Valerie Lee; Sarah Morris; Ann Reinecke; Austin Tome – Learning Assistance Review, 2023
In response to the COVID-19 crisis, embedded tutoring became a popular model to address the need for additional student support in higher education. Four U.S. community colleges collaborated to develop a successful embedded tutoring model that provides a framework and definition for embedded tutoring and training for tutors and participating…
Descriptors: Tutoring, Models, Community Colleges, Training