Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 22 |
Since 2016 (last 10 years) | 46 |
Since 2006 (last 20 years) | 57 |
Descriptor
Computer Simulation | 71 |
Molecular Structure | 71 |
Chemistry | 60 |
Science Instruction | 37 |
Teaching Methods | 35 |
Scientific Concepts | 29 |
Undergraduate Students | 24 |
College Science | 19 |
Science Education | 17 |
Visualization | 17 |
Computer Software | 15 |
More ▼ |
Source
Author
Publication Type
Education Level
Higher Education | 39 |
Postsecondary Education | 30 |
Secondary Education | 8 |
High Schools | 7 |
Junior High Schools | 5 |
Middle Schools | 4 |
Elementary Education | 3 |
Grade 8 | 2 |
Audience
Practitioners | 7 |
Teachers | 6 |
Researchers | 1 |
Students | 1 |
Location
Colorado | 2 |
Australia | 1 |
Canada (Calgary) | 1 |
Germany | 1 |
Indonesia | 1 |
Indonesia (Jakarta) | 1 |
Japan | 1 |
Kentucky | 1 |
Mississippi | 1 |
New Jersey | 1 |
New York (Rochester) | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Echeverri-Jimenez, Emmanuel; Oliver-Hoyo, Maria – Journal of Chemical Education, 2021
Gaussian-2-Blender is an open-source application programming interface (API) written in Python that allows for the conversion of Gaussian input files to 3D objects of different formats. This new tool was developed in response to the shortcomings of available programs to import Gaussian calculations into augmented reality (AR) or virtual reality…
Descriptors: Chemistry, Programming Languages, Computation, Computer Simulation
Salvatore G. Garofalo – Journal of Science Education and Technology, 2025
The initial learning experience is a critical opportunity to support conceptual understanding of abstract STEM concepts. Although hands-on activities and physical three-dimensional models are beneficial, they are seldom utilized and are replaced increasingly by digital simulations and laboratory exercises presented on touchscreen tablet computers.…
Descriptors: High School Freshmen, Science Instruction, Chemistry, Molecular Structure
Yue Zhang; Misa Sayama; Michelle Luo; Yining Lu; Dean J. Tantillo – Journal of Chemical Education, 2022
The Databank of Dynamics Trajectories (DDT, notthatddt.org) was established to assist students in visualizing the dynamical behaviors occurring during chemical reactions and conformational changes, with a focus on processes taught in introductory organic chemistry classes. Animations of reacting molecules created using "ab initio"…
Descriptors: Science Instruction, Organic Chemistry, Introductory Courses, Molecular Structure
Matovu, Henry; Won, Mihye; Treagust, David Franklin; Ungu, Dewi Ayu Kencana; Mocerino, Mauro; Tsai, Chin-Chung; Tasker, Roy – Chemistry Education Research and Practice, 2023
In recent years, chemistry educators are increasingly adopting immersive virtual reality (IVR) technology to help learners visualise molecular interactions. However, educational studies on IVR mostly investigated its usability and user perceptions leaving out its impact on improving conceptual understanding. If they evaluated students' knowledge…
Descriptors: Science Education, Chemistry, Computer Simulation, Undergraduate Students
Hootan Roshandel; Matthew Shammami; Shiyun Lin; Yin-Pok Wong; Paula L. Diaconescu – Journal of Chemical Education, 2023
The rise of virtual and online education in recent years has led to the development and popularization of many online tools, notably three-dimensional (3D) models and augmented reality (AR), for visualizing various structures in chemical sciences. The majority of the developed tools focus on either small molecules or biological systems, as…
Descriptors: Plastics, Science Instruction, Chemistry, Computer Software
Seritan, Stefan; Wang, Yuanheng; Ford, Jason E.; Valentini, Alessio; Gold, Tom; Marti´nez, Todd J. – Journal of Chemical Education, 2021
Interactive molecular dynamics in virtual reality (IMD-VR) simulations provide a digital molecular playground for students as an alternative or complement to traditional molecular modeling kits or 2D illustrations. Previous IMD-VR studies have used molecular mechanics to enable simulations of macromolecules such as proteins and nanostructures for…
Descriptors: Science Instruction, Computer Simulation, Molecular Structure, Educational Technology
Lau, Poh Nguk; Chan, Wen Loong; Li, Yuxuan – Journal of Chemical Education, 2022
As part of COVID-19 preparedness, a student-developed, Android-based app was used as a pre-laboratory learning aid for a molecular modeling laboratory in a first-year general chemistry course. A worksheet activity with trigger codes and questions related to spatial features of transition metal complexes was designed. Using the Transition Metal…
Descriptors: Visualization, Computer Oriented Programs, Organic Chemistry, Molecular Structure
Alrmuny, Dalal Za'al Ali – ProQuest LLC, 2022
To deliver successful integration of virtual reality (VR) technology into chemistry education, it is essential that students have clear and positive perceptions about the purpose and the value of such integration. An important part of establishing a plan for integrating virtual reality technology into chemistry education is to explore the current…
Descriptors: Middle School Students, Student Attitudes, Student Experience, Student Behavior
Student Perceptions Using Augmented Reality and 3D Visualization Technologies in Chemistry Education
Abdinejad, Maryam; Talaie, Borzu; Qorbani, Hossain S.; Dalili, Shadi – Journal of Science Education and Technology, 2021
Visualizing molecular conformations and complex compound structures and chemical transformations in 3D is one of the most difficult tasks for undergraduate chemistry students. Modern computational technologies have revolutionized every aspect of our lives, including education. As a result, many researchers and educators are working on enhancing…
Descriptors: Visualization, Molecular Structure, Educational Technology, Technology Uses in Education
Hameedur Rahman; Samiya Abdul Wahid; Faizan Ahmad; Numan Ali – Education and Information Technologies, 2024
Virtual classrooms based on the metaverse or virtual reality are useful and effective for imparting basic chemistry concepts. Interactive and immersive environments can effectively teach fundamental chemistry concepts, such as chemical bonding and formulas, thereby making these otherwise abstract and intangible ideas more accessible and…
Descriptors: Chemistry, Science Instruction, Game Based Learning, Computer Simulation
Qianfu Luo; Chenyu Shi; Zhaoxia Wang; Meng Chen; Da-Hui Qu – Journal of Chemical Education, 2022
Given the importance of self-healing polymers for chemistry education, herein, we introduce our latest research results in self-healing materials based on thioctic acid into undergraduate chemistry laboratory. In this experiment, a natural small molecule, thioctic acid (TA), and a few other commercially-available reagents have been used to make a…
Descriptors: Chemistry, Plastics, Undergraduate Study, College Science
Charlotte A. Dodson; Stephen E. Flower; Mark Thomas – Journal of Chemical Education, 2023
Industrial drug discovery teams encompass scientists from multiple specialties and require participants to communicate effectively across disciplinary boundaries. In this paper, we present an undergraduate or graduate classroom simulation of this environment. Over a series of five workshops, student teams of mixed scientific backgrounds perform…
Descriptors: Drug Therapy, Pharmacy, Teamwork, Interdisciplinary Approach
Fernandes, Henrique S.; Cerqueira, Nuno M. F. S. A.; Sousa, Sergio F. – Journal of Chemical Education, 2021
Visualization can be a motivating way to teach students about molecules. Nowadays, the available experimental data and accurate computational results allow students to build realistic and accurate molecular models. These models include the representation of complex systems such as proteins, membranes, or nanotubes. However, the visualization of…
Descriptors: Computer Simulation, Virtual Classrooms, Internet, Handheld Devices
Schwedler, Stefanie; Kaldewey, Marvin – Chemistry Education Research and Practice, 2020
Research in the past decades repeatedly revealed university students' struggles to properly understand physical chemistry concepts. In contrast to school, tertiary teaching relies heavily on the symbolic level, mainly applying abstract representations such as equations and diagrams. To follow the lessons and generate conceptual understanding,…
Descriptors: Chemistry, College Science, College Freshmen, Foreign Countries
Fombona-Pascual, Alba; Fombona, Javier; Vazquez-Cano, Esteban – Chemistry Education Research and Practice, 2022
Atomic/molecular visualization for human sight is usually generated by a software that reproduces a 3D reality on a 2D screen. Although Virtual Reality (VR) software was originally developed for the gaming industry, now it is used in academia for chemistry teaching. This work reviews the scientific literature on 3D visualization in stereoscopic…
Descriptors: Chemistry, Science Instruction, Scientific Research, Molecular Structure