NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Washington1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Charlotte A. Dodson; Stephen E. Flower; Mark Thomas – Journal of Chemical Education, 2023
Industrial drug discovery teams encompass scientists from multiple specialties and require participants to communicate effectively across disciplinary boundaries. In this paper, we present an undergraduate or graduate classroom simulation of this environment. Over a series of five workshops, student teams of mixed scientific backgrounds perform…
Descriptors: Drug Therapy, Pharmacy, Teamwork, Interdisciplinary Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Aw, Jonah Kailer; Boellaard, Kevin Christopher; Tan, Teck Kiang; Yap, John; Loh, Yi Ping; Colasson, Benoît; Blanc, Étienne; Lam, Yulin; Fung, Fun Man – Journal of Chemical Education, 2020
Visualization of three-dimensional (3D) elements has always played a huge role in chemistry education. At the same time, it is a challenge to teach with most representations being shown in two-dimensional (2D) media. With the recent rise of extended reality (XR) that includes virtual and augmented reality (VR/AR) technology in higher education,…
Descriptors: Molecular Structure, Science Instruction, Teaching Methods, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
O'Neil, Natalie J.; Scott, Star; Relph, Rachael; Ponnusamy, Ettigounder – Journal of Chemical Education, 2021
A systems thinking approach to incorporating green chemistry and safety into laboratory culture is vital, as chemists will be at the molecular level of the innovative solutions to our global challenges. Training chemists to have the skills and culture to accomplish this feat in the safest way possible is pivotal to safe working conditions within…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Laboratory Safety
Peer reviewed Peer reviewed
Direct linkDirect link
D'Ambruoso, Gemma D.; Cremeens, Matthew E.; Hendricks, Brett R. – Journal of Chemical Education, 2018
Instructional videos have been prepared using Adobe Captivate software to create animated tutorials to capture instrument and molecular modeling software simulations and to allow for increased independent hands-on instrument use by students and faster training for instructors and teaching assistants. The videos are available on YouTube and can be…
Descriptors: Animation, Computer Software, Student Surveys, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Fontana, Matthew T. – Journal of Chemical Education, 2020
Social distancing during the COVID-19 pandemic presents mental health and academic obstacles for students. As mental health can strongly influence academic performance, addressing the loss of community by transitioning to distance education, midsemester, is imperative. This work draws upon the community and wellness benefits associated with online…
Descriptors: Science Instruction, Videoconferencing, Video Games, Educational Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Behmke, Derek; Kerven, David; Lutz, Robert; Paredes, Julia; Pennington, Richard; Brannock, Evelyn; Deiters, Michael; Rose, John; Stevens, Kevin – Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, 2018
Spatial reasoning is defined as the ability to generate, retain, and manipulate abstract visual images. In chemistry, spatial reasoning skills are typically taught using 2-D paper-based models, 3-D handheld models, and computerized models. These models are designed to aid student learning by integrating information from the macroscopic,…
Descriptors: Science Instruction, Computer Simulation, Educational Technology, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Robertson, Michael J.; Jorgensen, William L. – Journal of Chemical Education, 2015
Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…
Descriptors: Organic Chemistry, Visual Aids, Theories, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III – Journal of Chemical Education, 2013
This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…
Descriptors: Science Instruction, Scientific Concepts, Eye Movements, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Evans, Michael J.; Moore, Jeffrey S. – Journal of Chemical Education, 2011
In recent years, postsecondary instructors have recognized the potential of wikis to transform the way students learn in a collaborative environment. However, few instructors have embraced in-depth student use of chemistry software for the creation of interactive chemistry content on the Web. Using currently available software, students are able…
Descriptors: Feedback (Response), Organic Chemistry, Computer Software, Course Content
Peer reviewed Peer reviewed
Direct linkDirect link
Dori, Yehudit Judy; Kaberman, Zvia – Instructional Science: An International Journal of the Learning Sciences, 2012
Much knowledge in chemistry exists at a molecular level, inaccessible to direct perception. Chemistry instruction should therefore include multiple visual representations, such as molecular models and symbols. This study describes the implementation and assessment of a learning unit designed for 12th grade chemistry honors students. The organic…
Descriptors: Organic Chemistry, Grade 12, Secondary School Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia – Journal of Chemical Education, 2009
A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…
Descriptors: Prediction, Organic Chemistry, Computer Software, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Henary, Maher M.; Russell, Arlene A. – Journal of Chemical Education, 2007
Kinetics constitutes a core topic in both the lecture and laboratory components of lower- level chemistry courses. While textbook examples can ignore issues of time, temperature and safety, the laboratory can not. Reactions must occur slowly enough to be detected by students, occur rapidly enough for data collection in the few hours assigned to a…
Descriptors: Organic Chemistry, Spreadsheets, Laboratory Equipment, Laboratory Experiments
Peer reviewed Peer reviewed
Lane, Charles A.; And Others – Journal of Chemical Education, 1984
Discusses modifications in the fatty acid monolayer experiment to reduce the inaccurate moleculary data students usually obtain. Copies of the experimental procedure used and a Pascal computer program to work up the data are available from the authors. (JN)
Descriptors: Chemistry, College Science, Computer Software, Higher Education
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1985
Describes: (1) an interactive computer simulation for a science fair display of chromatography inks; (2) analytical chemistry programs; (3) microcomputer-assisted drills in organic synthesis; (4) programs for conformation analysis of ethane and butane; (5) MOLPIX--a program for generating and displaying molecular structures; and (6) chemical…
Descriptors: Chemistry, College Science, Computer Simulation, Computer Software
Previous Page | Next Page »
Pages: 1  |  2