NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Blanchard, Simon J.; Aloise, Daniel; DeSarbo, Wayne S. – Psychometrika, 2012
The p-median offers an alternative to centroid-based clustering algorithms for identifying unobserved categories. However, existing p-median formulations typically require data aggregation into a single proximity matrix, resulting in masked respondent heterogeneity. A proposed three-way formulation of the p-median problem explicitly considers…
Descriptors: Matrices, Undergraduate Students, Heuristics, Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Fong, Duncan K. H.; Ebbes, Peter; DeSarbo, Wayne S. – Psychometrika, 2012
Multiple regression is frequently used across the various social sciences to analyze cross-sectional data. However, it can often times be challenging to justify the assumption of common regression coefficients across all respondents. This manuscript presents a heterogeneous Bayesian regression model that enables the estimation of…
Descriptors: Monte Carlo Methods, Social Sciences, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
DeSarbo, Wayne S.; Park, Joonwook; Scott, Crystal J. – Psychometrika, 2008
A cyclical conditional maximum likelihood estimation procedure is developed for the multidimensional unfolding of two- or three-way dominance data (e.g., preference, choice, consideration) measured on ordered successive category rating scales. The technical description of the proposed model and estimation procedure are discussed, as well as the…
Descriptors: Monte Carlo Methods, Rating Scales, Computation, Multidimensional Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Hwang, Heungsun; Takane, Yoshio; DeSarbo, Wayne S. – Multivariate Behavioral Research, 2007
The growth curve model has been a useful tool for the analysis of repeated measures data. However, it is designed for an aggregate-sample analysis based on the assumption that the entire sample of respondents are from a single homogenous population. Thus, this method may not be suitable when heterogeneous subgroups exist in the population with…
Descriptors: Equations (Mathematics), Antisocial Behavior, Computation, Child Behavior
Peer reviewed Peer reviewed
Bijmolt, Tammo H. A.; DeSarbo, Wayne S.; Wedel, Michel – Multivariate Behavioral Research, 1998
A multidimensional scaling procedure is introduced that attempts to derive a spatial representation of stimuli unconfounded by the effect of subjects' degrees of familiarity with these stimuli. A Monte Carlo study investigating the extent to which the procedure recovers known parameters shows that the procedure succeeds in adjusting for…
Descriptors: Familiarity, Models, Monte Carlo Methods, Multidimensional Scaling
Peer reviewed Peer reviewed
Kim, Chulwan; Rangaswamy, Arvind; DeSarbo, Wayne S. – Multivariate Behavioral Research, 1999
Presents an approach to multidimensional unfolding that reduces the occurrence of degenerate solutions and conducts a Monte Carlo study to demonstrate the superiority of the new method to the ALSCAL and KYST nonmetric procedures for student preference data. (SLD)
Descriptors: Monte Carlo Methods, Multidimensional Scaling, Problem Solving, Simulation
Peer reviewed Peer reviewed
Lenk, Peter J.; DeSarbo, Wayne S. – Psychometrika, 2000
Presents a hierarchical Bayes approach to modeling parameter heterogeneity in generalized linear models. The approach combines the flexibility of semiparametric latent class models that assume common parameters for each subpopulation and the parsimony of random effects models that assume normal distributions for the regression parameters.…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Simulation, Statistical Distributions
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; And Others – Psychometrika, 1994
This paper presents a new procedure called TREEFAM for estimating ultrametric tree structures from proximity data confounded by differential stimulus familiarity. The objective is to quantitatively filter out effects of stimulus unfamiliarity. Superiority of TREEFAM over conventional methods is illustrated through a Monte Carlo study and an…
Descriptors: Consumer Economics, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
DeSarbo, Wayne S.; Fong, Duncan K. H.; Liechty, John; Saxton, M. Kim – Psychometrika, 2004
This manuscript introduces a new Bayesian finite mixture methodology for the joint clustering of row and column stimuli/objects associated with two-mode asymmetric proximity, dominance, or profile data. That is, common clusters are derived which partition both the row and column stimuli/objects simultaneously into the same derived set of clusters.…
Descriptors: Bayesian Statistics, Multivariate Analysis, Monte Carlo Methods, Consumer Economics
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; And Others – Psychometrika, 1989
A method is presented that simultaneously estimates cluster membership and corresponding regression functions for a sample of observations or subjects. This methodology is presented with the simulated annealing-based algorithm. A set of Monte Carlo analyses is included to demonstrate the performance of the algorithm. (SLD)
Descriptors: Algorithms, Cluster Analysis, Estimation (Mathematics), Least Squares Statistics
Peer reviewed Peer reviewed
Young, Martin R.; DeSarbo, Wayne S. – Psychometrika, 1995
A new parametric maximum likelihood procedure is proposed for estimating ultrametric trees for the analysis of conditional rank order proximity data. Technical aspects of the model and the estimation algorithm are discussed, and Monte Carlo results illustrate its application. A consumer psychology application is also examined. (SLD)
Descriptors: Algorithms, Consumer Economics, Estimation (Mathematics), Maximum Likelihood Statistics
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; And Others – Psychometrika, 1992
TSCALE, a multidimensional scaling procedure based on the contrast model of A. Tversky for asymmetric three-way, two-mode proximity data, is presented. TSCALE conceptualizes a latent dimensional structure to describe the judgmental stimuli. A Monte Carlo analysis and two consumer psychology applications illustrate the procedure. (SLD)
Descriptors: Consumer Economics, Data Analysis, Equations (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; Cho, Jaewun – Psychometrika, 1989
This paper presents a new stochastic multidimensional scaling vector threshold model designed to analyze "pick any/n" choice data. A maximum likelihood procedure is formulated to estimate a joint space of both individuals and stimuli. The non-linear probit type model is described, and a Monte Carlo analysis is performed. (TJH)
Descriptors: Consumer Economics, Equations (Mathematics), Factor Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; And Others – Psychometrika, 1996
A stochastic multidimensional unfolding (MDU) procedure is presented to represent individual differences in phased or sequential decision processes spatially. A Monte Carlo analysis demonstrates estimation proficiency and the appropriateness of the proposed model selection heuristic, and an application to capture awareness, consideration, and…
Descriptors: Cognitive Processes, Consumer Economics, Decision Making, Estimation (Mathematics)