Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Error of Measurement | 4 |
Monte Carlo Methods | 4 |
Hierarchical Linear Modeling | 2 |
Sample Size | 2 |
Statistical Bias | 2 |
Accuracy | 1 |
Bayesian Statistics | 1 |
Bias | 1 |
Comparative Analysis | 1 |
Computation | 1 |
Effect Size | 1 |
More ▼ |
Source
AERA Online Paper Repository | 4 |
Author
Ferron, John M. | 1 |
Finch, William Holmes | 1 |
Hernandez Finch, Maria E. | 1 |
Joo, Seang-hwane | 1 |
Keller, Bryan Sean | 1 |
Lu, Rui | 1 |
Wang, Yan | 1 |
Ye, Feifei | 1 |
Zigler, Christina K. | 1 |
Publication Type
Speeches/Meeting Papers | 4 |
Reports - Research | 3 |
Information Analyses | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lu, Rui; Keller, Bryan Sean – AERA Online Paper Repository, 2019
When estimating an average treatment effect with observational data, it's possible to get an unbiased estimate of the causal effect if all confounding variables are observed and reliably measured. In education, confounding variables are often latent constructs. Covariate selection methods used in causal inference applications assume that all…
Descriptors: Factor Analysis, Predictor Variables, Monte Carlo Methods, Comparative Analysis
Joo, Seang-hwane; Wang, Yan; Ferron, John M. – AERA Online Paper Repository, 2017
Multiple-baseline studies provide meta-analysts the opportunity to compute effect sizes based on either within-series comparisons of treatment phase to baseline phase observations, or time specific between-series comparisons of observations from those that have started treatment to observations of those that are still in baseline. The advantage of…
Descriptors: Meta Analysis, Effect Size, Hierarchical Linear Modeling, Computation
Zigler, Christina K.; Ye, Feifei – AERA Online Paper Repository, 2016
Mediation in multi-level data can be examined using conflated multilevel modeling (CMM), unconflated multilevel modeling (UMM), or multilevel structural equation modeling (MSEM). A Monte Carlo study was performed to compare the three methods on bias, type I error, and power in a 1-1-1 model with random slopes. The three methods showed no…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Monte Carlo Methods, Statistical Bias
Finch, William Holmes; Hernandez Finch, Maria E. – AERA Online Paper Repository, 2017
High dimensional multivariate data, where the number of variables approaches or exceeds the sample size, is an increasingly common occurrence for social scientists. Several tools exist for dealing with such data in the context of univariate regression, including regularization methods such as Lasso, Elastic net, Ridge Regression, as well as the…
Descriptors: Multivariate Analysis, Regression (Statistics), Sampling, Sample Size