NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
Reardon, Sean F.; Shear, Benjamin R.; Castellano, Katherine E.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2017
Test score distributions of schools or demographic groups are often summarized by frequencies of students scoring in a small number of ordered proficiency categories. We show that heteroskedastic ordered probit (HETOP) models can be used to estimate means and standard deviations of multiple groups' test score distributions from such data. Because…
Descriptors: Scores, Statistical Analysis, Models, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew; Park, Trevor – Journal of Educational and Behavioral Statistics, 2017
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Descriptors: Bayesian Statistics, Multivariate Analysis, Item Response Theory, Regression (Statistics)
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Peer reviewed Peer reviewed
Berkhof, Johannes; Snijders, Tom A. B. – Journal of Educational and Behavioral Statistics, 2001
Describes available variance component tests and presents three new score tests. One test uses the asymptotic normal distribution of the test statistic as a reference distribution; the others use a Satterthwaite approximation for the null distribution of the test statistic. Evaluates the performance of these tests through Monte Carlo simulation.…
Descriptors: Models, Monte Carlo Methods, Simulation, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Maxwell, Scott – Journal of Educational and Behavioral Statistics, 2005
Retrospective or post hoc power analysis is recommended by reviewers and editors of many journals. Little literature has been found that gave a serious study of the post hoc power. When the sample size is large, the observed effect size is a good estimator of the true power. This article studies whether such a power estimator provides valuable…
Descriptors: Effect Size, Computation, Monte Carlo Methods, Bias