Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 15 |
Since 2016 (last 10 years) | 33 |
Since 2006 (last 20 years) | 52 |
Descriptor
Source
Journal of Experimental… | 85 |
Author
Publication Type
Journal Articles | 85 |
Reports - Research | 60 |
Reports - Evaluative | 23 |
Reports - Descriptive | 3 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Elementary Education | 4 |
Early Childhood Education | 2 |
Primary Education | 2 |
Grade 3 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Kindergarten | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 3 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 4 |
Trends in International… | 1 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Yongseok Lee; Walter L. Leite; Audrey J. Leroux – Journal of Experimental Education, 2024
In the current study, we compare propensity score (PS) matching methods for data with a cross-classified structure, where each individual is clustered within more than one group, but the groups are not hierarchically organized. Through a Monte Carlo simulation study, we compared sequential cluster matching (SCM), preferential within cluster…
Descriptors: Comparative Analysis, Data Analysis, Groups, Classification
Nianbo Dong; Benjamin Kelcey; Jessaca Spybrook – Journal of Experimental Education, 2024
Multisite cluster randomized trials (MCRTs), in which, the intermediate-level clusters (e.g., classrooms) are randomly assigned to the treatment or control condition within each site (e.g., school), are among the most commonly used experimental designs across a broad range of disciplines. MCRTs often align with the theory that programs are…
Descriptors: Research Design, Randomized Controlled Trials, Statistical Analysis, Sample Size
Mariola Moeyaert; Panpan Yang; Yukang Xue – Journal of Experimental Education, 2024
We have entered an era in which scientific evidence increasingly informs research practice and policy. As there is an exponential increase in the use of single-case experimental designs (SCEDs) to evaluate intervention effectiveness, there is accumulating evidence available for quantitative synthesis. Consequently, there is a growing interest in…
Descriptors: Meta Analysis, Research Design, Synthesis, Patients
Huang, Francis L. – Journal of Experimental Education, 2022
Experiments in psychology or education often use logistic regression models (LRMs) when analyzing binary outcomes. However, a challenge with LRMs is that results are generally difficult to understand. We present alternatives to LRMs in the analysis of experiments and discuss the linear probability model, the log-binomial model, and the modified…
Descriptors: Regression (Statistics), Monte Carlo Methods, Probability, Error Patterns
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Journal of Experimental Education, 2022
In two-level designs, the total sample is a function of both the number of Level 2 clusters and the average number of Level 1 units per cluster. Traditional multilevel power calculations rely on either the arithmetic average or the harmonic mean when estimating the average number of Level 1 units across clusters of unbalanced size. The current…
Descriptors: Multivariate Analysis, Randomized Controlled Trials, Monte Carlo Methods, Sample Size
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Aidoo, Eric Nimako; Appiah, Simon K.; Boateng, Alexander – Journal of Experimental Education, 2021
This study investigated the small sample biasness of the ordered logit model parameters under multicollinearity using Monte Carlo simulation. The results showed that the level of biasness associated with the ordered logit model parameters consistently decreases for an increasing sample size while the distribution of the parameters becomes less…
Descriptors: Statistical Bias, Monte Carlo Methods, Simulation, Sample Size
Weiss, Brandi A.; Dardick, William – Journal of Experimental Education, 2021
Classification measures and entropy variants can be used as indicators of model fit for logistic regression. These measures rely on a cut-point, "c," to determine predicted group membership. While recommendations exist for determining the location of the cut-point, these methods are primarily anecdotal. The current study used Monte Carlo…
Descriptors: Cutting Scores, Regression (Statistics), Classification, Monte Carlo Methods
Weiss, Brandi A.; Dardick, William – Journal of Experimental Education, 2020
Researchers are often reluctant to rely on classification rates because a model with favorable classification rates but poor separation may not replicate well. In comparison, entropy captures information about borderline cases unlikely to generalize to the population. In logistic regression, the correctness of predicted group membership is known,…
Descriptors: Classification, Regression (Statistics), Goodness of Fit, Monte Carlo Methods
Wang, Yan; Kim, Eunsook; Joo, Seang-Hwane; Chun, Seokjoon; Alamri, Abeer; Lee, Philseok; Stark, Stephen – Journal of Experimental Education, 2022
Multilevel latent class analysis (MLCA) has been increasingly used to investigate unobserved population heterogeneity while taking into account data dependency. Nonparametric MLCA has gained much popularity due to the advantage of classifying both individuals and clusters into latent classes. This study demonstrated the need to relax the…
Descriptors: Nonparametric Statistics, Hierarchical Linear Modeling, Monte Carlo Methods, Simulation
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Liu, Yixing; Thompson, Marilyn S. – Journal of Experimental Education, 2022
A simulation study was conducted to explore the impact of differential item functioning (DIF) on general factor difference estimation for bifactor, ordinal data. Common analysis misspecifications in which the generated bifactor data with DIF were fitted using models with equality constraints on noninvariant item parameters were compared under data…
Descriptors: Comparative Analysis, Item Analysis, Sample Size, Error of Measurement
Nazari, Sanaz; Leite, Walter L.; Huggins-Manley, A. Corinne – Journal of Experimental Education, 2023
The piecewise latent growth models (PWLGMs) can be used to study changes in the growth trajectory of an outcome due to an event or condition, such as exposure to an intervention. When there are multiple outcomes of interest, a researcher may choose to fit a series of PWLGMs or a single parallel-process PWLGM. A comparison of these models is…
Descriptors: Growth Models, Statistical Analysis, Intervention, Comparative Analysis