NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 85 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Estabrook, Ryne; Neale, Michael – Multivariate Behavioral Research, 2013
Factor score estimation is a controversial topic in psychometrics, and the estimation of factor scores from exploratory factor models has historically received a great deal of attention. However, both confirmatory factor models and the existence of missing data have generally been ignored in this debate. This article presents a simulation study…
Descriptors: Factor Analysis, Scores, Computation, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Hwang, Heungsun; Dillon, William R. – Multivariate Behavioral Research, 2010
A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…
Descriptors: Data Analysis, Multivariate Analysis, Classification, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Gottschall, Amanda C.; West, Stephen G.; Enders, Craig K. – Multivariate Behavioral Research, 2012
Behavioral science researchers routinely use scale scores that sum or average a set of questionnaire items to address their substantive questions. A researcher applying multiple imputation to incomplete questionnaire data can either impute the incomplete items prior to computing scale scores or impute the scale scores directly from other scale…
Descriptors: Questionnaires, Data Analysis, Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria – Multivariate Behavioral Research, 2010
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years…
Descriptors: Computation, Intervals, Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Lai-Fa – Multivariate Behavioral Research, 2010
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
Descriptors: Longitudinal Studies, Data, Models, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Chun, So Yeon; Shapiro, Alexander – Multivariate Behavioral Research, 2009
The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main…
Descriptors: Statistical Analysis, Structural Equation Models, Validity, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hsieh, Chueh-An; von Eye, Alexander A.; Maier, Kimberly S. – Multivariate Behavioral Research, 2010
The application of multidimensional item response theory models to repeated observations has demonstrated great promise in developmental research. It allows researchers to take into consideration both the characteristics of item response and measurement error in longitudinal trajectory analysis, which improves the reliability and validity of the…
Descriptors: Item Response Theory, Change, Adolescents, Social Isolation
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S. – Multivariate Behavioral Research, 2012
A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…
Descriptors: Monte Carlo Methods, Computation, Robustness (Statistics), Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steyn, H. S., Jr.; Ellis, S. M. – Multivariate Behavioral Research, 2009
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Descriptors: Effect Size, Multivariate Analysis, Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John; Kaczetow, Walter – Multivariate Behavioral Research, 2008
Simulating multivariate nonnormal data with specified correlation matrices is difficult. One especially popular method is Vale and Maurelli's (1983) extension of Fleishman's (1978) polynomial transformation technique to multivariate applications. This requires the specification of distributional moments and the calculation of an intermediate…
Descriptors: Monte Carlo Methods, Correlation, Sampling, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pituch, Keenan A.; Stapleton, Laura M. – Multivariate Behavioral Research, 2008
A Monte Carlo study compared the statistical performance of standard and robust multilevel mediation analysis methods to test indirect effects for a cluster randomized experimental design under various departures from normality. The performance of these methods was examined for an upper-level mediation process, where the indirect effect is a fixed…
Descriptors: Research Design, Monte Carlo Methods, Statistical Analysis, Error Patterns
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6