NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Ayse Busra Ceviren – ProQuest LLC, 2024
Latent change score (LCS) models are a powerful class of structural equation modeling that allows researchers to work with latent difference scores that minimize measurement error. LCS models define change as a function of prior status, which makes it well-suited for modeling developmental theories or processes. In LCS models, like other latent…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Bias, Monte Carlo Methods
Ning Jiang – ProQuest LLC, 2022
The purpose of this study is to evaluate the performance of three commonly used model fit indices when measurement invariance is tested in the context of multiple-group CFA analysis with categorical-ordered data. As applied researchers are increasingly aware of the importance of testing measurement invariance, as well as Likert-type scales are…
Descriptors: Goodness of Fit, Factor Analysis, Data, Monte Carlo Methods
Lotfi Simon Kerzabi – ProQuest LLC, 2021
Monte Carlo methods are an accepted methodology in regards to generation critical values for a Maximum test. The same methods are also applicable to the evaluation of the robustness of the new created test. A table of critical values was created, and the robustness of the new maximum test was evaluated for five different distributions. Robustness…
Descriptors: Data, Monte Carlo Methods, Testing, Evaluation Research
Kazuki Hori – ProQuest LLC, 2021
Educational researchers are often interested in phenomena that unfold over time within a person and at the same time, relationships between their characteristics that are stable over time. Since variables in a longitudinal study reflect both within- and between-person effects, researchers need to disaggregate them to understand the phenomenon of…
Descriptors: Time, Structural Equation Models, Monte Carlo Methods, Simulation
Fan Pan – ProQuest LLC, 2021
This dissertation informed researchers about the performance of different level-specific and target-specific model fit indices in Multilevel Latent Growth Model (MLGM) using unbalanced design and different trajectories. As the use of MLGMs is a relatively new field, this study helped further the field by informing researchers interested in using…
Descriptors: Goodness of Fit, Item Response Theory, Growth Models, Monte Carlo Methods
Jinjin Huang – ProQuest LLC, 2020
Measurement invariance is crucial for an effective and valid measure of a construct. Invariance holds when the latent trait varies consistently across subgroups; in other words, the mean differences among subgroups are only due to true latent ability differences. Differential item functioning (DIF) occurs when measurement invariance is violated.…
Descriptors: Robustness (Statistics), Item Response Theory, Test Items, Item Analysis
Dogucu, Mine – ProQuest LLC, 2017
When researchers fit statistical models to multiply imputed datasets, they have to fit the model separately for each imputed dataset. Since there are multiple datasets, there are always multiple sets of model results. It is possible for some of these sets of results not to converge while some do converge. This study examined occurrence of such a…
Descriptors: Statistical Analysis, Error of Measurement, Goodness of Fit, Monte Carlo Methods
Spencer, Bryden – ProQuest LLC, 2016
Value-added models are a class of growth models used in education to assign responsibility for student growth to teachers or schools. For value-added models to be used fairly, sufficient statistical precision is necessary for accurate teacher classification. Previous research indicated precision below practical limits. An alternative approach has…
Descriptors: Monte Carlo Methods, Comparative Analysis, Accuracy, High Stakes Tests
Wilson, Celia M. – ProQuest LLC, 2010
Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…
Descriptors: Monte Carlo Methods, Measurement, Multivariate Analysis, Error of Measurement