Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 4 |
Descriptor
Correlation | 16 |
Monte Carlo Methods | 16 |
Statistical Distributions | 16 |
Sample Size | 6 |
Simulation | 6 |
Computer Simulation | 3 |
Factor Analysis | 3 |
Multivariate Analysis | 3 |
Predictor Variables | 3 |
Analysis of Covariance | 2 |
Comparative Analysis | 2 |
More ▼ |
Source
Educational and Psychological… | 4 |
Psychometrika | 4 |
International Journal for the… | 1 |
Journal of Experimental… | 1 |
Structural Equation Modeling | 1 |
Structural Equation Modeling:… | 1 |
Author
Publication Type
Journal Articles | 12 |
Reports - Evaluative | 8 |
Reports - Research | 6 |
Speeches/Meeting Papers | 4 |
Reports - Descriptive | 2 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tong-Rong Yang; Li-Jen Weng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In Savalei's (2011) simulation that evaluated the performance of polychoric correlation estimates in small samples, two methods for treating zero-frequency cells, adding 0.5 (ADD) and doing nothing (NONE), were compared. Savalei tentatively suggested using ADD for binary data and NONE for data with three or more categories. Yet, Savalei's…
Descriptors: Correlation, Statistical Distributions, Monte Carlo Methods, Sample Size
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Bishara, Anthony J.; Hittner, James B. – Educational and Psychological Measurement, 2015
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared…
Descriptors: Research Methodology, Monte Carlo Methods, Correlation, Simulation
Kulick, George; Wright, Ronald – International Journal for the Scholarship of Teaching and Learning, 2008
Grading on the curve is a common practice in higher education. While there are many critics of the practice it still finds wide spread acceptance particularly in science classes. Advocates believe that in large classes student ability is likely to be normally distributed. If test scores are also normally distributed instructors and students tend…
Descriptors: Grading, Higher Education, Scores, Outcomes of Education

Steiger, James H.; Browne, Michael W. – Psychometrika, 1984
A general procedure is provided for comparing correlation coefficients between optimal linear composites. It allows computationally efficient significance tests on independent or dependent multiple correlations, partial correlations, and canonical correlations, with or without the assumption of multivariate normality. Evidence from Monte Carlo…
Descriptors: Correlation, Hypothesis Testing, Monte Carlo Methods, Statistical Distributions

Palachek, Albert D.; Schucany, William R. – Psychometrika, 1984
The use of U-statistics based on rank correlation coefficients in estimating the strength of concordance among a group of rankers is examined for cases where the null hypothesis of random rankings is not tenable. (Author/BW)
Descriptors: Correlation, Estimation (Mathematics), Hypothesis Testing, Interrater Reliability

May, Kim; Hittner, James B. – Journal of Experimental Education, 1997
A Monte Carlo evaluation of four test statistics for comparing dependent zero-order correlations was conducted with four sample sizes and three population distributions. Results indicate that choice of optimal test statistic depends on sample size and distribution, and predictor intercorrelation and effect size or magnitude of the…
Descriptors: Correlation, Effect Size, Monte Carlo Methods, Predictor Variables

Headrick, Todd C.; Sawilosky, Shlomo S. – Psychometrika, 1999
Proposes a procedure for generating multivariate nonnormal distributions. The procedure, an extension of the Fleishman power method (A. Fleishman, 1978), generates the average value of intercorrelations much closer to population parameters than competing procedures for skewed and heavy tailed distributions and small sample sizes. Reports Monte…
Descriptors: Correlation, Equations (Mathematics), Monte Carlo Methods, Multivariate Analysis

Glorfeld, Louis W. – Educational and Psychological Measurement, 1995
A modification of Horn's parallel analysis is introduced that is based on the Monte Carlo simulation of the null distributions of the eigenvalues generated from a population correlation identity matrix. This modification reduces the tendency of the parallel analysis procedure to overextract or to extract poorly defined factors. (SLD)
Descriptors: Correlation, Factor Analysis, Factor Structure, Matrices

Fouladi, Rachel T. – Structural Equation Modeling, 2000
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
Descriptors: Analysis of Covariance, Correlation, Monte Carlo Methods, Multivariate Analysis
Friedman, Larry P. – 1984
Few methods have been tried and used to graphically represent more than two variables. This poster session showed a new method for representing three continuous variables on a single scatterplot using the THREEDE computer program. Two variables are represented as a normal bivariate distribution. The third variable is represented by a symbol, e.g.…
Descriptors: Computer Graphics, Computer Software, Correlation, Data Analysis

Cornwell, John M. – Educational and Psychological Measurement, 1993
A comparison is made of the power and actual alpha levels of three tests of homogeneity for independent product-moment correlation coefficients using Monte Carlo methods while selectively studying sample size and varying the number of correlation reliabilities. How robust these are in applied work is discussed. (SLD)
Descriptors: Comparative Analysis, Correlation, Error of Measurement, Monte Carlo Methods
Kistner, Emily O.; Muller, Keith E. – Psychometrika, 2004
Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact…
Descriptors: Correlation, Test Reliability, Test Results, Probability
Lambert, Richard G.; Curlette, William L. – 1995
Validity generalization meta-analysis (VG) examines the extent to which the validity of an instrument can be transported across settings. VG offers correction and summarization procedures designed in part to remove the effects of statistical artifacts on estimates of association between criterion and predictor. By employing a random effects model,…
Descriptors: Correlation, Error of Measurement, Estimation (Mathematics), Meta Analysis
Wu, Yi-Cheng; McLean, James E. – 1993
By employing a concomitant variable, researchers can reduce the error, increase the precision, and maximize the power of an experimental design. Blocking and analysis of covariance (ANCOVA) are most often used to harness the power of a concomitant variable. Whether to block or covary and how many blocks to be used if a block design is chosen…
Descriptors: Analysis of Covariance, Analysis of Variance, Computer Simulation, Correlation
Previous Page | Next Page ยป
Pages: 1 | 2