Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 26 |
Descriptor
Difficulty Level | 47 |
Monte Carlo Methods | 47 |
Test Items | 34 |
Item Response Theory | 28 |
Comparative Analysis | 17 |
Markov Processes | 11 |
Mathematical Models | 11 |
Models | 11 |
Simulation | 10 |
Bayesian Statistics | 9 |
Correlation | 9 |
More ▼ |
Source
Author
Finch, Holmes | 3 |
Ahn, Soyeon | 2 |
Allen, Nancy L. | 2 |
Donoghue, John R. | 2 |
Jiao, Hong | 2 |
Jin, Ying | 2 |
Kamata, Akihito | 2 |
Wang, Shudong | 2 |
Alipour, Mohammad | 1 |
Ames, Allison | 1 |
Aminifar, Elahe | 1 |
More ▼ |
Publication Type
Reports - Research | 36 |
Journal Articles | 30 |
Speeches/Meeting Papers | 12 |
Reports - Evaluative | 9 |
Dissertations/Theses -… | 2 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Grade 8 | 1 |
Audience
Researchers | 4 |
Location
South Korea | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 3 |
ACT Assessment | 1 |
SAT (College Admission Test) | 1 |
Test of English for… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Yu, Albert; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2023
We propose a new item response theory growth model with item-specific learning parameters, or ISLP, and two variations of this model. In the ISLP model, either items or blocks of items have their own learning parameters. This model may be used to improve the efficiency of learning in a formative assessment. We show ways that the ISLP model's…
Descriptors: Item Response Theory, Learning, Markov Processes, Monte Carlo Methods
Arikan, Serkan; Aybek, Eren Can – Educational Measurement: Issues and Practice, 2022
Many scholars compared various item discrimination indices in real or simulated data. Item discrimination indices, such as item-total correlation, item-rest correlation, and IRT item discrimination parameter, provide information about individual differences among all participants. However, there are tests that aim to select a very limited number…
Descriptors: Monte Carlo Methods, Item Analysis, Correlation, Individual Differences
Park, Sung Eun; Ahn, Soyeon; Zopluoglu, Cengiz – Educational and Psychological Measurement, 2021
This study presents a new approach to synthesizing differential item functioning (DIF) effect size: First, using correlation matrices from each study, we perform a multigroup confirmatory factor analysis (MGCFA) that examines measurement invariance of a test item between two subgroups (i.e., focal and reference groups). Then we synthesize, across…
Descriptors: Item Analysis, Effect Size, Difficulty Level, Monte Carlo Methods
Finch, Holmes; French, Brian F. – Applied Measurement in Education, 2019
The usefulness of item response theory (IRT) models depends, in large part, on the accuracy of item and person parameter estimates. For the standard 3 parameter logistic model, for example, these parameters include the item parameters of difficulty, discrimination, and pseudo-chance, as well as the person ability parameter. Several factors impact…
Descriptors: Item Response Theory, Accuracy, Test Items, Difficulty Level
Azhar, Aqil Zainal; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2022
This paper studies the use of Reinforcement Learning (RL) policies for optimizing the sequencing of online learning materials to students. Our approach provides an end to end pipeline for automatically deriving and evaluating robust representations of students' interactions and policies for content sequencing in online educational settings. We…
Descriptors: Reinforcement, Instructional Materials, Learning Analytics, Policy Analysis
Bazaldua, Diego A. Luna; Lee, Young-Sun; Keller, Bryan; Fellers, Lauren – Asia Pacific Education Review, 2017
The performance of various classical test theory (CTT) item discrimination estimators has been compared in the literature using both empirical and simulated data, resulting in mixed results regarding the preference of some discrimination estimators over others. This study analyzes the performance of various item discrimination estimators in CTT:…
Descriptors: Test Items, Monte Carlo Methods, Item Response Theory, Correlation
Ames, Allison; Smith, Elizabeth – Journal of Educational Measurement, 2018
Bayesian methods incorporate model parameter information prior to data collection. Eliciting information from content experts is an option, but has seen little implementation in Bayesian item response theory (IRT) modeling. This study aims to use ethical reasoning content experts to elicit prior information and incorporate this information into…
Descriptors: Item Response Theory, Bayesian Statistics, Ethics, Specialists
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Frick, Hannah; Strobl, Carolin; Zeileis, Achim – Educational and Psychological Measurement, 2015
Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest differential item functioning (DIF) tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch…
Descriptors: Item Response Theory, Test Bias, Comparative Analysis, Scores
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Wu, Yi-Fang – ProQuest LLC, 2015
Item response theory (IRT) uses a family of statistical models for estimating stable characteristics of items and examinees and defining how these characteristics interact in describing item and test performance. With a focus on the three-parameter logistic IRT (Birnbaum, 1968; Lord, 1980) model, the current study examines the accuracy and…
Descriptors: Item Response Theory, Test Items, Accuracy, Computation
Koziol, Natalie A. – Applied Measurement in Education, 2016
Testlets, or groups of related items, are commonly included in educational assessments due to their many logistical and conceptual advantages. Despite their advantages, testlets introduce complications into the theory and practice of educational measurement. Responses to items within a testlet tend to be correlated even after controlling for…
Descriptors: Classification, Accuracy, Comparative Analysis, Models
Landmesser, John Andrew – ProQuest LLC, 2014
Information technology (IT) investment decision makers are required to process large volumes of complex data. An existing body of knowledge relevant to IT portfolio management (PfM), decision analysis, visual comprehension of large volumes of information, and IT investment decision making suggest Multi-Criteria Decision Making (MCDM) and…
Descriptors: Information Technology, Portfolio Assessment, Decision Making, Cognitive Processes
Aminifar, Elahe; Alipour, Mohammad – European Journal of Educational Sciences, 2014
Item bank is one of the main components of adaptive tests. In this research, a test was made in order to design and calibrate items for Homogeneous Second Order Differential Equations. The items were designed according to the goal-content's table of the subject and the Bloom's taxonomy learning domain. Validity and reliability of these items was…
Descriptors: Test Items, Calculus, Mathematics Tests, Mathematics Instruction