Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 31 |
Since 2016 (last 10 years) | 54 |
Since 2006 (last 20 years) | 105 |
Descriptor
Goodness of Fit | 148 |
Monte Carlo Methods | 148 |
Sample Size | 45 |
Models | 42 |
Factor Analysis | 41 |
Item Response Theory | 39 |
Structural Equation Models | 39 |
Error of Measurement | 30 |
Simulation | 29 |
Statistical Analysis | 29 |
Correlation | 27 |
More ▼ |
Source
Author
Fan, Xitao | 7 |
Cai, Li | 3 |
Dardick, William | 3 |
Stone, Clement A. | 3 |
Wang, Wen-Chung | 3 |
Weiss, Brandi A. | 3 |
Wells, Craig S. | 3 |
Abdous, Belkacem | 2 |
Bang Quan Zheng | 2 |
Bentler, Peter M. | 2 |
Bowles, Ryan P. | 2 |
More ▼ |
Publication Type
Journal Articles | 117 |
Reports - Research | 94 |
Reports - Evaluative | 34 |
Speeches/Meeting Papers | 13 |
Reports - Descriptive | 8 |
Dissertations/Theses -… | 6 |
Opinion Papers | 1 |
Tests/Questionnaires | 1 |
Education Level
Audience
Practitioners | 1 |
Location
Taiwan | 2 |
Czech Republic | 1 |
Denmark | 1 |
Dominican Republic | 1 |
Germany | 1 |
Italy | 1 |
Netherlands | 1 |
Russia | 1 |
United Kingdom (Glasgow) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
Timothy R. Konold; Elizabeth A. Sanders – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Within the frequentist structural equation modeling (SEM) framework, adjudicating model quality through measures of fit has been an active area of methodological research. Complicating this conversation is research revealing that a higher quality measurement portion of a SEM can result in poorer estimates of overall model fit than lower quality…
Descriptors: Structural Equation Models, Reliability, Bayesian Statistics, Goodness of Fit
Combs, Adam – Journal of Educational Measurement, 2023
A common method of checking person-fit in Bayesian item response theory (IRT) is the posterior-predictive (PP) method. In recent years, more powerful approaches have been proposed that are based on resampling methods using the popular L*[subscript z] statistic. There has also been proposed a new Bayesian model checking method based on pivotal…
Descriptors: Bayesian Statistics, Goodness of Fit, Evaluation Methods, Monte Carlo Methods
Franco-Martínez, Alicia; Alvarado, Jesús M.; Sorrel, Miguel A. – Educational and Psychological Measurement, 2023
A sample suffers range restriction (RR) when its variance is reduced comparing with its population variance and, in turn, it fails representing such population. If the RR occurs over the latent factor, not directly over the observed variable, the researcher deals with an indirect RR, common when using convenience samples. This work explores how…
Descriptors: Factor Analysis, Factor Structure, Scores, Sampling
Hyunjung Lee; Heining Cham – Educational and Psychological Measurement, 2024
Determining the number of factors in exploratory factor analysis (EFA) is crucial because it affects the rest of the analysis and the conclusions of the study. Researchers have developed various methods for deciding the number of factors to retain in EFA, but this remains one of the most difficult decisions in the EFA. The purpose of this study is…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Goodness of Fit
Richa Ghevarghese – ProQuest LLC, 2022
Growth mixture modeling (GMM) is a methodological tool used to represent heterogeneity in longitudinal datasets through the identification of unobserved subgroups following qualitatively and quantitatively distinct trajectories in a population. These growth trajectories or functional forms are informed by the underlying developmental theory, are…
Descriptors: Monte Carlo Methods, Longitudinal Studies, Simulation, Growth Models
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This paper aims to advocate for a balanced approach to model fit evaluation in structural equation modeling (SEM). The ongoing debate surrounding chi-square test statistics and fit indices has been characterized by ambiguity and controversy. Despite the acknowledged limitations of relying solely on the chi-square test, its careful application can…
Descriptors: Monte Carlo Methods, Structural Equation Models, Goodness of Fit, Robustness (Statistics)
Jang, Yoona; Hong, Sehee – Educational and Psychological Measurement, 2023
The purpose of this study was to evaluate the degree of classification quality in the basic latent class model when covariates are either included or are not included in the model. To accomplish this task, Monte Carlo simulations were conducted in which the results of models with and without a covariate were compared. Based on these simulations,…
Descriptors: Classification, Models, Prediction, Sample Size
Ning Jiang – ProQuest LLC, 2022
The purpose of this study is to evaluate the performance of three commonly used model fit indices when measurement invariance is tested in the context of multiple-group CFA analysis with categorical-ordered data. As applied researchers are increasingly aware of the importance of testing measurement invariance, as well as Likert-type scales are…
Descriptors: Goodness of Fit, Factor Analysis, Data, Monte Carlo Methods
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Xin Qiao; Akihito Kamata; Yusuf Kara; Cornelis Potgieter; Joseph Nese – Grantee Submission, 2023
In this article, the beta-binomial model for count data is proposed and demonstrated in terms of its application in the context of oral reading fluency (ORF) assessment, where the number of words read correctly (WRC) is of interest. Existing studies adopted the binomial model for count data in similar assessment scenarios. The beta-binomial model,…
Descriptors: Oral Reading, Reading Fluency, Bayesian Statistics, Markov Processes
Weiss, Brandi A.; Dardick, William – Journal of Experimental Education, 2021
Classification measures and entropy variants can be used as indicators of model fit for logistic regression. These measures rely on a cut-point, "c," to determine predicted group membership. While recommendations exist for determining the location of the cut-point, these methods are primarily anecdotal. The current study used Monte Carlo…
Descriptors: Cutting Scores, Regression (Statistics), Classification, Monte Carlo Methods
Lee, Bitna; Sohn, Wonsook – Educational and Psychological Measurement, 2022
A Monte Carlo study was conducted to compare the performance of a level-specific (LS) fit evaluation with that of a simultaneous (SI) fit evaluation in multilevel confirmatory factor analysis (MCFA) models. We extended previous studies by examining their performance under MCFA models with different factor structures across levels. In addition,…
Descriptors: Goodness of Fit, Factor Structure, Monte Carlo Methods, Factor Analysis
Melissa G. Wolf; Daniel McNeish – Grantee Submission, 2023
To evaluate the fit of a confirmatory factor analysis model, researchers often rely on fit indices such as SRMR, RMSEA, and CFI. These indices are frequently compared to benchmark values of 0.08, 0.06, and 0.96, respectively, established by Hu and Bentler (1999). However, these indices are affected by model characteristics and their sensitivity to…
Descriptors: Programming Languages, Cutting Scores, Benchmarking, Factor Analysis
Wang, Yan; Kim, Eunsook; Ferron, John M.; Dedrick, Robert F.; Tan, Tony X.; Stark, Stephen – Educational and Psychological Measurement, 2021
Factor mixture modeling (FMM) has been increasingly used to investigate unobserved population heterogeneity. This study examined the issue of covariate effects with FMM in the context of measurement invariance testing. Specifically, the impact of excluding and misspecifying covariate effects on measurement invariance testing and class enumeration…
Descriptors: Role, Error of Measurement, Monte Carlo Methods, Models