NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Audience
Researchers2
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel B.; Thompson, Marilyn S.; Levy, Roy; Lo, Wen-Juo – Educational and Psychological Measurement, 2015
Traditional parallel analysis (T-PA) estimates the number of factors by sequentially comparing sample eigenvalues with eigenvalues for randomly generated data. Revised parallel analysis (R-PA) sequentially compares the "k"th eigenvalue for sample data to the "k"th eigenvalue for generated data sets, conditioned on"k"-…
Descriptors: Factor Analysis, Error of Measurement, Accuracy, Hypothesis Testing
Spencer, Bryden – ProQuest LLC, 2016
Value-added models are a class of growth models used in education to assign responsibility for student growth to teachers or schools. For value-added models to be used fairly, sufficient statistical precision is necessary for accurate teacher classification. Previous research indicated precision below practical limits. An alternative approach has…
Descriptors: Monte Carlo Methods, Comparative Analysis, Accuracy, High Stakes Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Lang, Kyle M.; Little, Todd D. – International Journal of Behavioral Development, 2014
We present a new paradigm that allows simplified testing of multiparameter hypotheses in the presence of incomplete data. The proposed technique is a straight-forward procedure that combines the benefits of two powerful data analytic tools: multiple imputation and nested-model ?2 difference testing. A Monte Carlo simulation study was conducted to…
Descriptors: Hypothesis Testing, Data Analysis, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Weihua; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2012
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Descriptors: Robustness (Statistics), Hypothesis Testing, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Price, Larry R. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Descriptors: Sample Size, Time, Bayesian Statistics, Structural Equation Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Solanas, Antonio; Manolov, Rumen; Sierra, Vicenta – Psicologica: International Journal of Methodology and Experimental Psychology, 2010
In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is…
Descriptors: Computation, Hypothesis Testing, Correlation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bonnett, Douglas G. – Psychological Methods, 2008
Most psychology journals now require authors to report a sample value of effect size along with hypothesis testing results. The sample effect size value can be misleading because it contains sampling error. Authors often incorrectly interpret the sample effect size as if it were the population effect size. A simple solution to this problem is to…
Descriptors: Intervals, Hypothesis Testing, Effect Size, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Jenson, William R.; Clark, Elaine; Kircher, John C.; Kristjansson, Sean D. – Psychology in the Schools, 2007
Evidence-based practice approaches to interventions has come of age and promises to provide a new standard of excellence for school psychologists. This article describes several definitions of evidence-based practice and the problems associated with traditional statistical analyses that rely on rejection of the null hypothesis for the…
Descriptors: School Psychologists, Statistical Analysis, Hypothesis Testing, Intervention
Robey, Randall R.; Barcikowski, Robert S. – 1987
The mixed model analysis of variance assumes a mathematical property known as sphericity. Several preliminary tests have been proposed to detect departures from the sphericity assumption. The logic of the preliminary testing procedure is to conduct the mixed model analysis of variance if the preliminary test suggests that the sphericity assumption…
Descriptors: Analysis of Variance, Error of Measurement, Hypothesis Testing, Mathematical Models
Peer reviewed Peer reviewed
Raaijmakers, Jeroen G. W.; Pieters, Jo P. M. – Psychometrika, 1987
Functional and structural relationship alternatives to the standard "F"-test for analysis of covariance (ANCOVA) are discussed for cases when the covariate is measured with error. An approximate statistical test based on the functional relationship approach is preferred on the basis of Monte Carlo simulation results. (SLD)
Descriptors: Analysis of Covariance, Computer Simulation, Error of Measurement, Hypothesis Testing
Hummel, Thomas J.; Johnston, Charles B. – 1986
This study investigated seven methods for analyzing multivariate group differences. Bonferroni t statistics, multivariate analysis of variance (MANOVA) followed by analysis of variance (ANOVA), and five other methods were studied using Monte Carlo methods. Methods were compared with respect to (1) experimentwise error rate; (2) power; (3) number…
Descriptors: Analysis of Variance, Comparative Analysis, Correlation, Differences
Tatsuoka, Kikumi K.; Tatsuoka, Maurice M. – 1985
The study examines the rule space model, a probabilistic model capable of measuring cognitive skill acquisition and of diagnosing erroneous rules of operation in a procedural domain. The model involves two important components: (1) determination of a set of bug distributions (bug density functions representing clusters around the rules); and (2)…
Descriptors: Artificial Intelligence, Cognitive Processes, Computer Assisted Testing, Computer Software