Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 10 |
Descriptor
Error of Measurement | 12 |
Monte Carlo Methods | 12 |
Predictor Variables | 12 |
Correlation | 4 |
Simulation | 4 |
Statistical Analysis | 4 |
Bias | 3 |
Comparative Analysis | 3 |
Equations (Mathematics) | 3 |
Hierarchical Linear Modeling | 3 |
Regression (Statistics) | 3 |
More ▼ |
Source
Educational and Psychological… | 3 |
Journal of Experimental… | 2 |
AERA Online Paper Repository | 1 |
American Journal of Evaluation | 1 |
ProQuest LLC | 1 |
Psychometrika | 1 |
Society for Research on… | 1 |
Author
Algina, James | 1 |
Aydin, Burak | 1 |
Chan, Wai | 1 |
Curlette, William L. | 1 |
Dickinson, Terry L. | 1 |
Dong, Nianbo | 1 |
Kazuki Hori | 1 |
Keller, Bryan Sean | 1 |
Kwok, Oi-man | 1 |
Lai, Mark H. C. | 1 |
Lambert, Richard G. | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 7 |
Speeches/Meeting Papers | 3 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Environment… | 1 |
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Kazuki Hori – ProQuest LLC, 2021
Educational researchers are often interested in phenomena that unfold over time within a person and at the same time, relationships between their characteristics that are stable over time. Since variables in a longitudinal study reflect both within- and between-person effects, researchers need to disaggregate them to understand the phenomenon of…
Descriptors: Time, Structural Equation Models, Monte Carlo Methods, Simulation
Lu, Rui; Keller, Bryan Sean – AERA Online Paper Repository, 2019
When estimating an average treatment effect with observational data, it's possible to get an unbiased estimate of the causal effect if all confounding variables are observed and reliably measured. In education, confounding variables are often latent constructs. Covariate selection methods used in causal inference applications assume that all…
Descriptors: Factor Analysis, Predictor Variables, Monte Carlo Methods, Comparative Analysis
Robert Meyer; Sara Hu; Michael Christian – Society for Research on Educational Effectiveness, 2022
This paper develops models to measure growth in student achievement with a focus on the possibility of differential growth in achievement for low and high-achieving students. We consider a gap-closing model that evaluates the degree to which students in a target group -- students in the bottom quartile of measured achievement -- perform better…
Descriptors: Academic Achievement, Achievement Gap, Models, Measurement Techniques
Nugent, William Robert; Moore, Matthew; Story, Erin – Educational and Psychological Measurement, 2015
The standardized mean difference (SMD) is perhaps the most important meta-analytic effect size. It is typically used to represent the difference between treatment and control population means in treatment efficacy research. It is also used to represent differences between populations with different characteristics, such as persons who are…
Descriptors: Error of Measurement, Error Correction, Predictor Variables, Monte Carlo Methods
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Dong, Nianbo – American Journal of Evaluation, 2015
Researchers have become increasingly interested in programs' main and interaction effects of two variables (A and B, e.g., two treatment variables or one treatment variable and one moderator) on outcomes. A challenge for estimating main and interaction effects is to eliminate selection bias across A-by-B groups. I introduce Rubin's causal model to…
Descriptors: Probability, Statistical Analysis, Research Design, Causal Models
Yuan, Ke-Hai; Chan, Wai – Psychometrika, 2011
The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…
Descriptors: Statistical Bias, Error of Measurement, Regression (Statistics), Predictor Variables
Le, Huy; Marcus, Justin – Educational and Psychological Measurement, 2012
This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…
Descriptors: Monte Carlo Methods, Probability, Mathematical Concepts, Effect Size
Lambert, Richard G.; Curlette, William L. – 1995
Validity generalization meta-analysis (VG) examines the extent to which the validity of an instrument can be transported across settings. VG offers correction and summarization procedures designed in part to remove the effects of statistical artifacts on estimates of association between criterion and predictor. By employing a random effects model,…
Descriptors: Correlation, Error of Measurement, Estimation (Mathematics), Meta Analysis
Dickinson, Terry L. – 1985
The general linear model was described, and the influence that measurement errors have on model parameters was discussed. In particular, the assumptions of classical true-score theory were used to develop algebraic relationships between the squared multiple correlations coefficient and the regression coefficients in the infallible and fallible…
Descriptors: Analysis of Covariance, Analysis of Variance, Correlation, Error of Measurement