Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 9 |
Descriptor
Error of Measurement | 12 |
Monte Carlo Methods | 12 |
Research Design | 12 |
Statistical Bias | 7 |
Effect Size | 4 |
Sample Size | 4 |
Statistical Analysis | 4 |
Regression (Statistics) | 3 |
Bias | 2 |
Case Studies | 2 |
Correlation | 2 |
More ▼ |
Source
Author
Ayse Busra Ceviren | 1 |
Barreca, Alan I. | 1 |
Beretvas, S. Natasha | 1 |
Cappelleri, Joseph C. | 1 |
Clark, Elaine | 1 |
Deke, John | 1 |
Dong, Nianbo | 1 |
Ferron, John | 1 |
Ferron, John M. | 1 |
Foster-Johnson, Lynn | 1 |
Hong, Sanghyun | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 8 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Numerical/Quantitative Data | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Researchers | 1 |
Location
California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Environment… | 1 |
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Ayse Busra Ceviren – ProQuest LLC, 2024
Latent change score (LCS) models are a powerful class of structural equation modeling that allows researchers to work with latent difference scores that minimize measurement error. LCS models define change as a function of prior status, which makes it well-suited for modeling developmental theories or processes. In LCS models, like other latent…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Bias, Monte Carlo Methods
Hong, Sanghyun; Reed, W. Robert – Research Synthesis Methods, 2021
The purpose of this study is to show how Monte Carlo analysis of meta-analytic estimators can be used to select estimators for specific research situations. Our analysis conducts 1620 individual experiments, where each experiment is defined by a unique combination of sample size, effect size, effect size heterogeneity, publication selection…
Descriptors: Monte Carlo Methods, Meta Analysis, Research Methodology, Experiments
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2014
One approach for combining single-case data involves use of multilevel modeling. In this article, the authors use a Monte Carlo simulation study to inform applied researchers under which realistic conditions the three-level model is appropriate. The authors vary the value of the immediate treatment effect and the treatment's effect on the time…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Case Studies, Research Design
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Dong, Nianbo – American Journal of Evaluation, 2015
Researchers have become increasingly interested in programs' main and interaction effects of two variables (A and B, e.g., two treatment variables or one treatment variable and one moderator) on outcomes. A challenge for estimating main and interaction effects is to eliminate selection bias across A-by-B groups. I introduce Rubin's causal model to…
Descriptors: Probability, Statistical Analysis, Research Design, Causal Models
Barreca, Alan I.; Lindo, Jason M.; Waddell, Glen R. – National Bureau of Economic Research, 2011
This study uses Monte Carlo simulations to demonstrate that regression-discontinuity designs arrive at biased estimates when attributes related to outcomes predict heaping in the running variable. After showing that our usual diagnostics are poorly suited to identifying this type of problem, we provide alternatives. We also demonstrate how the…
Descriptors: Statistical Bias, Regression (Statistics), Research Design, Monte Carlo Methods

Ferron, John; Foster-Johnson, Lynn; Kromrey, Jeffrey D. – Journal of Experimental Education, 2003
Used Monte Carlo methods to examine the Type I error rates for randomization tests applied to single-case data arising from ABAB designs involving random, systematic, or response-guided assignment of interventions. Discusses conditions under which Type I error rate is controlled or is not. (SLD)
Descriptors: Error of Measurement, Monte Carlo Methods, Research Design
Jenson, William R.; Clark, Elaine; Kircher, John C.; Kristjansson, Sean D. – Psychology in the Schools, 2007
Evidence-based practice approaches to interventions has come of age and promises to provide a new standard of excellence for school psychologists. This article describes several definitions of evidence-based practice and the problems associated with traditional statistical analyses that rely on rejection of the null hypothesis for the…
Descriptors: School Psychologists, Statistical Analysis, Hypothesis Testing, Intervention
Wang, Zhongmiao; Thompson, Bruce – Journal of Experimental Education, 2007
In this study the authors investigated the use of 5 (i.e., Claudy, Ezekiel, Olkin-Pratt, Pratt, and Smith) R[squared] correction formulas with the Pearson r[squared]. The authors estimated adjustment bias and precision under 6 x 3 x 6 conditions (i.e., population [rho] values of 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9; population shapes normal, skewness…
Descriptors: Effect Size, Correlation, Mathematical Formulas, Monte Carlo Methods
Smith, Philip L. – 1980
Accurate estimation of variance components used in generalizability theory is essential for the theory to be viewed as an efficacious mechanism for studying the reliability and validity of a measurement procedure. This paper explores two alternatives for dealing with the apparent instability of small sample size used in determining the accuracy of…
Descriptors: Analysis of Variance, Error of Measurement, High Schools, Measurement Techniques

Cappelleri, Joseph C.; And Others – Evaluation Review, 1991
A conceptual approach and a set of computer simulations are presented to demonstrate that random measurement error in the pretest does not bias the estimate of the treatment effect in the regression-discontinuity design. Focus is on the case of no interaction between pretest and treatment on posttest. (SLD)
Descriptors: Analysis of Covariance, Computer Simulation, Equations (Mathematics), Error of Measurement