NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers4
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 155 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bo Zhang; Jing Luo; Susu Zhang; Tianjun Sun; Don C. Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Oblique bifactor models, where group factors are allowed to correlate with one another, are commonly used. However, the lack of research on the statistical properties of oblique bifactor models renders the statistical validity of empirical findings questionable. Therefore, the present study took the first step to examine the statistical properties…
Descriptors: Correlation, Predictor Variables, Monte Carlo Methods, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy R. Konold; Elizabeth A. Sanders; Kelvin Afolabi – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Measurement invariance (MI) is an essential part of validity evidence concerned with ensuring that tests function similarly across groups, contexts, and time. Most evaluations of MI involve multigroup confirmatory factor analyses (MGCFA) that assume simple structure. However, recent research has shown that constraining non-target indicators to…
Descriptors: Evaluation Methods, Error of Measurement, Validity, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Richard Breen; John Ermisch – Sociological Methods & Research, 2024
We consider the problem of bias arising from conditioning on a post-outcome collider. We illustrate this with reference to Elwert and Winship (2014) but we go beyond their study to investigate the extent to which inverse probability weighting might offer solutions. We use linear models to derive expressions for the bias arising in different kinds…
Descriptors: Probability, Statistical Bias, Weighted Scores, Least Squares Statistics
Ayse Busra Ceviren – ProQuest LLC, 2024
Latent change score (LCS) models are a powerful class of structural equation modeling that allows researchers to work with latent difference scores that minimize measurement error. LCS models define change as a function of prior status, which makes it well-suited for modeling developmental theories or processes. In LCS models, like other latent…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Bias, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Rüttenauer, Tobias; Ludwig, Volker – Sociological Methods & Research, 2023
Fixed effects (FE) panel models have been used extensively in the past, as those models control for all stable heterogeneity between units. Still, the conventional FE estimator relies on the assumption of parallel trends between treated and untreated groups. It returns biased results in the presence of heterogeneous slopes or growth curves that…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Statistical Bias, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Najera, Hector – Measurement: Interdisciplinary Research and Perspectives, 2023
Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and…
Descriptors: Poverty, Error of Measurement, Classification, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Poom, Leo; af Wåhlberg, Anders – Research Synthesis Methods, 2022
In meta-analysis, effect sizes often need to be converted into a common metric. For this purpose conversion formulas have been constructed; some are exact, others are approximations whose accuracy has not yet been systematically tested. We performed Monte Carlo simulations where samples with pre-specified population correlations between the…
Descriptors: Meta Analysis, Effect Size, Mathematical Formulas, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Aidoo, Eric Nimako; Appiah, Simon K.; Boateng, Alexander – Journal of Experimental Education, 2021
This study investigated the small sample biasness of the ordered logit model parameters under multicollinearity using Monte Carlo simulation. The results showed that the level of biasness associated with the ordered logit model parameters consistently decreases for an increasing sample size while the distribution of the parameters becomes less…
Descriptors: Statistical Bias, Monte Carlo Methods, Simulation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Leszczensky, Lars; Wolbring, Tobias – Sociological Methods & Research, 2022
Does "X" affect "Y"? Answering this question is particularly difficult if reverse causality is looming. Many social scientists turn to panel data to address such questions of causal ordering. Yet even in longitudinal analyses, reverse causality threatens causal inference based on conventional panel models. Whereas the…
Descriptors: Attribution Theory, Causal Models, Comparative Analysis, Statistical Bias
Wang, Qian – ProQuest LLC, 2022
Over the last four decades, meta-analysis has proven to be a vital analysis strategy in educational research for synthesizing research findings from different studies. When synthesizing studies in a meta-analysis, it is common to assume that the true underlying effect varies from study to study, as studies will differ in design, participants,…
Descriptors: Meta Analysis, Educational Research, Maximum Likelihood Statistics, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Umut Atasever; Francis L. Huang; Leslie Rutkowski – Large-scale Assessments in Education, 2025
When analyzing large-scale assessments (LSAs) that use complex sampling designs, it is important to account for probability sampling using weights. However, the use of these weights in multilevel models has been widely debated, particularly regarding their application at different levels of the model. Yet, no consensus has been reached on the best…
Descriptors: Mathematics Tests, International Assessment, Elementary Secondary Education, Foreign Countries
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper…
Descriptors: Sampling, Structural Equation Models, Factor Structure, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yixing; Thompson, Marilyn S. – Journal of Experimental Education, 2022
A simulation study was conducted to explore the impact of differential item functioning (DIF) on general factor difference estimation for bifactor, ordinal data. Common analysis misspecifications in which the generated bifactor data with DIF were fitted using models with equality constraints on noninvariant item parameters were compared under data…
Descriptors: Comparative Analysis, Item Analysis, Sample Size, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11