Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 15 |
Descriptor
Bayesian Statistics | 17 |
Monte Carlo Methods | 17 |
Statistical Distributions | 17 |
Computation | 8 |
Maximum Likelihood Statistics | 7 |
Models | 7 |
Item Response Theory | 6 |
Markov Processes | 6 |
Statistical Inference | 5 |
Regression (Statistics) | 4 |
Achievement Tests | 3 |
More ▼ |
Source
Grantee Submission | 5 |
Journal of Educational and… | 3 |
Educational and Psychological… | 2 |
Psychometrika | 2 |
Journal of Educational… | 1 |
Journal on Efficiency and… | 1 |
ProQuest LLC | 1 |
Society for Research on… | 1 |
Author
Publication Type
Journal Articles | 12 |
Reports - Research | 12 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 1 | 1 |
Higher Education | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Primary Education | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Assessment of… | 1 |
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Qiao, Xin; Jiao, Hong; He, Qiwei – Journal of Educational Measurement, 2023
Multiple group modeling is one of the methods to address the measurement noninvariance issue. Traditional studies on multiple group modeling have mainly focused on item responses. In computer-based assessments, joint modeling of response times and action counts with item responses helps estimate the latent speed and action levels in addition to…
Descriptors: Multivariate Analysis, Models, Item Response Theory, Statistical Distributions
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Natesan, Prathiba; Hedges, Larry V. – Grantee Submission, 2016
Although immediacy is one of the necessary criteria to show strong evidence of a causal relation in SCDs, no inferential statistical tool is currently used to demonstrate it. We propose a Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. Unlike visual analysis that considers only 3-5 observations in…
Descriptors: Bayesian Statistics, Statistical Inference, Research Design, Models
Silva, R. M.; Guan, Y.; Swartz, T. B. – Journal on Efficiency and Responsibility in Education and Science, 2017
This paper attempts to bridge the gap between classical test theory and item response theory. It is demonstrated that the familiar and popular statistics used in classical test theory can be translated into a Bayesian framework where all of the advantages of the Bayesian paradigm can be realized. In particular, prior opinion can be introduced and…
Descriptors: Item Response Theory, Bayesian Statistics, Test Construction, Markov Processes
Yildiz, Mustafa – ProQuest LLC, 2017
Student misconceptions have been studied for decades from a curricular/instructional perspective and from the assessment/test level perspective. Numerous misconception assessment tools have been developed in order to measure students' misconceptions relative to the correct content. Often, these tools are used to make a variety of educational…
Descriptors: Misconceptions, Students, Item Response Theory, Models
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Culpepper, Steven Andrew; Park, Trevor – Journal of Educational and Behavioral Statistics, 2017
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Descriptors: Bayesian Statistics, Multivariate Analysis, Item Response Theory, Regression (Statistics)
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
May, Henry – Society for Research on Educational Effectiveness, 2014
Interest in variation in program impacts--How big is it? What might explain it?--has inspired recent work on the analysis of data from multi-site experiments. One critical aspect of this problem involves the use of random or fixed effect estimates to visualize the distribution of impact estimates across a sample of sites. Unfortunately, unless the…
Descriptors: Educational Research, Program Effectiveness, Research Problems, Computation
Seo, Dong Gi; Weiss, David J. – Educational and Psychological Measurement, 2013
The usefulness of the l[subscript z] person-fit index was investigated with achievement test data from 20 exams given to more than 3,200 college students. Results for three methods of estimating ? showed that the distributions of l[subscript z] were not consistent with its theoretical distribution, resulting in general overfit to the item response…
Descriptors: Achievement Tests, College Students, Goodness of Fit, Item Response Theory
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models

Lenk, Peter J.; DeSarbo, Wayne S. – Psychometrika, 2000
Presents a hierarchical Bayes approach to modeling parameter heterogeneity in generalized linear models. The approach combines the flexibility of semiparametric latent class models that assume common parameters for each subpopulation and the parsimony of random effects models that assume normal distributions for the regression parameters.…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Simulation, Statistical Distributions
Previous Page | Next Page ยป
Pages: 1 | 2