Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 4 |
Descriptor
Multiple Regression Analysis | 4 |
Predictor Variables | 4 |
Correlation | 2 |
Causal Models | 1 |
Comparative Analysis | 1 |
Computation | 1 |
Data Interpretation | 1 |
Effect Size | 1 |
Error of Measurement | 1 |
Graphs | 1 |
Interaction | 1 |
More ▼ |
Source
Journal of Educational and… | 4 |
Publication Type
Journal Articles | 4 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kim, Yongnam – Journal of Educational and Behavioral Statistics, 2019
Suppression effects in multiple linear regression are one of the most elusive phenomena in the educational and psychological measurement literature. The question is, How can including a variable, which is completely unrelated to the criterion variable, in regression models significantly increase the predictive power of the regression models? In…
Descriptors: Multiple Regression Analysis, Causal Models, Predictor Variables
Bodner, Todd E. – Journal of Educational and Behavioral Statistics, 2016
This article revisits how the end points of plotted line segments should be selected when graphing interactions involving a continuous target predictor variable. Under the standard approach, end points are chosen at ±1 or 2 standard deviations from the target predictor mean. However, when the target predictor and moderator are correlated or the…
Descriptors: Graphs, Multiple Regression Analysis, Predictor Variables, Correlation
Aloe, Ariel M.; Becker, Betsy Jane – Journal of Educational and Behavioral Statistics, 2012
A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…
Descriptors: Meta Analysis, Effect Size, Multiple Regression Analysis, Models
Azen, Razia; Budescu, David V. – Journal of Educational and Behavioral Statistics, 2006
Dominance analysis (DA) is a method used to compare the relative importance of predictors in multiple regression. DA determines the dominance of one predictor over another by comparing their additional R[squared] contributions across all subset models. In this article DA is extended to multivariate models by identifying a minimal set of criteria…
Descriptors: Multivariate Analysis, Predictor Variables, Multiple Regression Analysis, Comparative Analysis