NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Eid, Michael; Nussbeck, Fridtjof W.; Geiser, Christian; Cole, David A.; Gollwitzer, Mario; Lischetzke, Tanja – Psychological Methods, 2008
The question as to which structural equation model should be selected when multitrait-multimethod (MTMM) data are analyzed is of interest to many researchers. In the past, attempts to find a well-fitting model have often been data-driven and highly arbitrary. In the present article, the authors argue that the measurement design (type of methods…
Descriptors: Structural Equation Models, Multitrait Multimethod Techniques, Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Cole, David A.; Ciesla, Jeffrey A.; Steiger, James H. – Psychological Methods, 2007
In practice, the inclusion of correlated residuals in latent-variable models is often regarded as a statistical sleight of hand, if not an outright form of cheating. Consequently, researchers have tended to allow only as many correlated residuals in their models as are needed to obtain a good fit to the data. The current article demonstrates that…
Descriptors: Research Design, Multitrait Multimethod Techniques, Measurement Techniques, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Schermelleh-Engel, Karin; Keith, Nina; Moosbrugger, Helfried; Hodapp, Volker – Psychological Methods, 2004
An extension of latent state-trait (LST) theory to hierarchical LST models is presented. In hierarchical LST models, the covariances between 2 or more latent traits are explained by a general 3rd-order factor, and the covariances between latent state residuals pertaining to different traits measured on the same measurement occasion are explained…
Descriptors: Measurement Techniques, Statistical Analysis, Error of Measurement, Test Anxiety
Peer reviewed Peer reviewed
Direct linkDirect link
Furlow, Carolyn F.; Beretvas, S. Natasha – Psychological Methods, 2005
Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for…
Descriptors: Rejection (Psychology), Monte Carlo Methods, Least Squares Statistics, Correlation