Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 14 |
Descriptor
Multivariate Analysis | 15 |
Models | 6 |
Research Methodology | 5 |
Comparative Analysis | 4 |
Cluster Grouping | 3 |
Data Analysis | 3 |
Mathematics | 3 |
Measurement Techniques | 3 |
Computer Software | 2 |
Correlation | 2 |
Data | 2 |
More ▼ |
Author
Steinley, Douglas | 15 |
Brusco, Michael J. | 10 |
Brusco, Michael | 1 |
Cradit, J. Dennis | 1 |
Fox, Gavin L. | 1 |
Henson, Robert | 1 |
Hubert, Lawrence | 1 |
Kohn, Hans-Friedrich | 1 |
Singh, Renu | 1 |
Publication Type
Journal Articles | 15 |
Reports - Descriptive | 6 |
Reports - Evaluative | 4 |
Reports - Research | 3 |
Opinion Papers | 1 |
Reports - General | 1 |
Education Level
Higher Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2011
Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple…
Descriptors: Multivariate Analysis, Computation, Validity
Steinley, Douglas; Brusco, Michael J.; Henson, Robert – Multivariate Behavioral Research, 2012
A measure of "clusterability" serves as the basis of a new methodology designed to preserve cluster structure in a reduced dimensional space. Similar to principal component analysis, which finds the direction of maximal variance in multivariate space, principal cluster axes find the direction of maximum clusterability in multivariate space.…
Descriptors: Multivariate Analysis, Factor Analysis, Comparative Analysis, Federal Courts
Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2011
This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…
Descriptors: Multivariate Analysis, Monte Carlo Methods, Comparative Analysis, Models
Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2011
McLachlan (2011) and Vermunt (2011) each provided thoughtful replies to our original article (Steinley & Brusco, 2011). This response serves to incorporate some of their comments while simultaneously clarifying our position. We argue that greater caution against overparamaterization must be taken when assuming that clusters are highly elliptical…
Descriptors: Multivariate Analysis, Research Methodology, Data, Models
Brusco, Michael; Steinley, Douglas – Psychological Methods, 2010
Structural balance theory (SBT) has maintained a venerable status in the psychological literature for more than 5 decades. One important problem pertaining to SBT is the approximation of structural or generalized balance via the partitioning of the vertices of a signed graph into "K" clusters. This "K"-balance partitioning problem also has more…
Descriptors: Psychology, Mathematical Models, Stimuli, Measurement Techniques
Brusco, Michael J.; Singh, Renu; Steinley, Douglas – Psychometrika, 2009
The selection of a subset of variables from a pool of candidates is an important problem in several areas of multivariate statistics. Within the context of principal component analysis (PCA), a number of authors have argued that subset selection is crucial for identifying those variables that are required for correct interpretation of the…
Descriptors: Heuristics, Multivariate Analysis, Mathematics, School Personnel
Kohn, Hans-Friedrich; Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2010
The "p"-median clustering model represents a combinatorial approach to partition data sets into disjoint, nonhierarchical groups. Object classes are constructed around "exemplars", that is, manifest objects in the data set, with the remaining instances assigned to their closest cluster centers. Effective, state-of-the-art implementations of…
Descriptors: Computer Software, Psychological Studies, Data Analysis, Research Methodology
Steinley, Douglas; Hubert, Lawrence – Psychometrika, 2008
This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…
Descriptors: Multivariate Analysis, Learning Strategies
Steinley, Douglas; Brusco, Michael J. – Psychometrika, 2008
Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution of the random noise greatly impacts the…
Descriptors: Models, Comparative Analysis, Multivariate Analysis, Evaluation Methods
Brusco, Michael J.; Cradit, J. Dennis; Steinley, Douglas; Fox, Gavin L. – Multivariate Behavioral Research, 2008
Clusterwise linear regression is a multivariate statistical procedure that attempts to cluster objects with the objective of minimizing the sum of the error sums of squares for the within-cluster regression models. In this article, we show that the minimization of this criterion makes no effort to distinguish the error explained by the…
Descriptors: Regression (Statistics), Models, Research Methodology, Multivariate Analysis
Steinley, Douglas; Brusco, Michael J. – Multivariate Behavioral Research, 2008
A variance-to-range ratio variable weighting procedure is proposed. We show how this weighting method is theoretically grounded in the inherent variability found in data exhibiting cluster structure. In addition, a variable selection procedure is proposed to operate in conjunction with the variable weighting technique. The performances of these…
Descriptors: Test Items, Simulation, Multivariate Analysis, Data Analysis
Steinley, Douglas – Psychometrika, 2007
Given that a minor condition holds (e.g., the number of variables is greater than the number of clusters), a nontrivial lower bound for the sum-of-squares error criterion in K-means clustering is derived. By calculating the lower bound for several different situations, a method is developed to determine the adequacy of cluster solution based on…
Descriptors: Multivariate Analysis, Least Squares Statistics, Error of Measurement, Psychometrics
Brusco, Michael J.; Steinley, Douglas – Psychological Methods, 2006
The study of confusion data is a well established practice in psychology. Although many types of analytical approaches for confusion data are available, among the most common methods are the extraction of 1 or more subsets of stimuli, the partitioning of the complete stimulus set into distinct groups, and the ordering of the stimulus set. Although…
Descriptors: Stimuli, Multivariate Analysis, Psychology, Data
Steinley, Douglas – Psychological Methods, 2006
Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate…
Descriptors: Diagnostic Tests, Sample Size, Multivariate Analysis, Scaling
Steinley, Douglas – Psychological Methods, 2004
This article provides an investigation of cluster validation indices that relates 4 of the indices to the L. Hubert and P. Arable (1985) adjusted Rand index--the cluster validation measure of choice (G. W. Milligan & M. C. Cooper, 1986). It is shown how these other indices can be "roughly" transformed into the same scale as the adjusted Rand…
Descriptors: Scaling, Multivariate Analysis, Indexes, Research Methodology