NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Higher Education Opportunity…1
Showing 1 to 15 of 736 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
James E. Pustejovsky; Man Chen – Journal of Educational and Behavioral Statistics, 2024
Meta-analyses of educational research findings frequently involve statistically dependent effect size estimates. Meta-analysts have often addressed dependence issues using ad hoc approaches that involve modifying the data to conform to the assumptions of models for independent effect size estimates, such as by aggregating estimates to obtain one…
Descriptors: Meta Analysis, Multivariate Analysis, Effect Size, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sotoudeh, Ramina; DiMaggio, Paul – Sociological Methods & Research, 2023
Sociologists increasingly face choices among competing algorithms that represent reasonable approaches to the same task, with little guidance in choosing among them. We develop a strategy that uses simulated data to identify the conditions under which different methods perform well and applies what is learned from the simulations to predict which…
Descriptors: Algorithms, Simulation, Prediction, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
C. J. Van Lissa; M. Garnier-Villarreal; D. Anadria – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there…
Descriptors: Multivariate Analysis, Structural Equation Models, Open Source Technology, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kroc, Edward; Olvera Astivia, Oscar L. – Educational and Psychological Measurement, 2022
Setting cutoff scores is one of the most common practices when using scales to aid in classification purposes. This process is usually done univariately where each optimal cutoff value is decided sequentially, subscale by subscale. While it is widely known that this process necessarily reduces the probability of "passing" such a test,…
Descriptors: Multivariate Analysis, Cutting Scores, Classification, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Miriam Hattle; Joie Ensor; Katie Scandrett; Marienke van Middelkoop; Danielle A. van der Windt; Melanie A. Holden; Richard D. Riley – Research Synthesis Methods, 2024
Individual participant data (IPD) meta-analysis projects obtain, harmonise, and synthesise original data from multiple studies. Many IPD meta-analyses of randomised trials are initiated to identify treatment effect modifiers at the individual level, thus requiring statistical modelling of interactions between treatment effect and participant-level…
Descriptors: Meta Analysis, Randomized Controlled Trials, Outcomes of Treatment, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Giorgio Di Pietro – European Education, 2023
We use Eurobarometer data to examine barriers to international student mobility. Multivariate analysis is employed to study how individual characteristics are related to the obstacles preventing higher education students from participating in activities in another EU country. The results suggest that several demographic factors including area of…
Descriptors: Student Characteristics, Barriers, Student Mobility, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Ji, Peter – Psychology in the Schools, 2023
A Rasch analysis was conducted to assess a rubric that measures the quality of school-level variables that support the implementation of a social and emotional learning (SEL) program. SEL planning teams from 84 schools rated the quality of school-level variables (e.g., principal support, available funds, and resources) that support the…
Descriptors: Institutional Characteristics, Social Emotional Learning, Principals, Educational Resources
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzales, Joseph E. – Measurement: Interdisciplinary Research and Perspectives, 2021
JMP® Pro has introduced a new structural equation modeling (SEM) platform to its suite of multivariate methods of analysis. Utilizing their graphical user interface, JMP Pro has created a SEM platform that is easily navigable for both experienced and novice SEM users. As a new platform, JMP Pro does not have the capacity to implement certain…
Descriptors: Structural Equation Models, Multivariate Analysis, Usability, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Luke Keele; Matthew Lenard; Lindsay Page – Journal of Research on Educational Effectiveness, 2021
Many interventions in education occur in settings where treatments are applied to groups. For example, a reading intervention may be implemented for all students in some schools and withheld from students in other schools. When such treatments are nonrandomly allocated, outcomes across the treated and control groups may differ due to the treatment…
Descriptors: Observation, Educational Research, Regression (Statistics), Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Gongchang, Yueban; Wang, Yibing – AERA Online Paper Repository, 2020
Location tracking devices are becoming increasingly popular in practice to study movement of customers or track inventory. However, using location tracking devices in education contexts is quite novel. In this paper, we present a robust Bayesian nonparametric mixture model that clusters location data. We successfully apply this model on location…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Multivariate Analysis, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy; Hedges, Larry V.; Hedberg, E. C. – Journal of Experimental Education, 2022
Many experimental designs in educational and behavioral research involve at least one level of clustering. Clustering affects the precision of estimators and its impact on statistics in cross-sectional studies is well known. Clustering also occurs in longitudinal designs where students that are initially grouped may be regrouped in the following…
Descriptors: Educational Research, Multivariate Analysis, Longitudinal Studies, Effect Size
Pavlik, Philip I., Jr.; Eglington, Luke G.; Zhang, Liang – Grantee Submission, 2021
We describe a data mining pipeline to convert data from educational systems into knowledge component (KC) models. In contrast to other approaches, our approach employs and compares multiple model search methodologies (e.g., sparse factor analysis, covariance clustering) within a single pipeline. In this preliminary work, we describe our approach's…
Descriptors: Information Retrieval, Knowledge Management, Models, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2020
This article discusses estimation of average treatment effects for randomized controlled trials (RCTs) using grouped administrative data to help improve data access. The focus is on design-based estimators, derived using the building blocks of experiments, that are conducive to grouped data for a wide range of RCT designs, including clustered and…
Descriptors: Randomized Controlled Trials, Data Analysis, Research Design, Multivariate Analysis
Luke Keele; Matthew A. Lenard; Lindsay C. Page – Annenberg Institute for School Reform at Brown University, 2020
Many interventions in education occur in settings where treatments are applied to groups. For example, a reading intervention may be implemented for all students in some schools and withheld from students in other schools. When such treatments are non-randomly allocated, outcomes across the treated and control groups may differ due to the…
Descriptors: Observation, Educational Research, Regression (Statistics), Multivariate Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  50