NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman – Psychological Methods, 2013
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Descriptors: Structural Equation Models, Multivariate Analysis, Computation, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2011
Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple…
Descriptors: Multivariate Analysis, Computation, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
McLachlan, Geoffrey J. – Psychological Methods, 2011
I discuss the recommendations and cautions in Steinley and Brusco's (2011) article on the use of finite models to cluster a data set. In their article, much use is made of comparison with the "K"-means procedure. As noted by researchers for over 30 years, the "K"-means procedure can be viewed as a special case of finite mixture modeling in which…
Descriptors: Computation, Multivariate Analysis, Matrices, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2011
This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…
Descriptors: Multivariate Analysis, Monte Carlo Methods, Comparative Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Schepers, Jan; Van Mechelen, Iven – Psychological Methods, 2011
Profile data abound in a broad range of research settings. Often it is of considerable theoretical importance to address specific structural questions with regard to the major pattern as included in such data. A key challenge in this regard pertains to identifying which type of interaction (double ordinal, mixed ordinal/disordinal, double…
Descriptors: Matrices, Profiles, Multivariate Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2011
McLachlan (2011) and Vermunt (2011) each provided thoughtful replies to our original article (Steinley & Brusco, 2011). This response serves to incorporate some of their comments while simultaneously clarifying our position. We argue that greater caution against overparamaterization must be taken when assuming that clusters are highly elliptical…
Descriptors: Multivariate Analysis, Research Methodology, Data, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Baldwin, Scott A.; Bauer, Daniel J.; Stice, Eric; Rohde, Paul – Psychological Methods, 2011
Partially clustered designs, where clustering occurs in some conditions and not others, are common in psychology, particularly in prevention and intervention trials. This article reports results from a simulation comparing 5 approaches to analyzing partially clustered data, including Type I errors, parameter bias, efficiency, and power. Results…
Descriptors: Multivariate Analysis, Error of Measurement, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Vermunt, Jeroen K. – Psychological Methods, 2011
Steinley and Brusco (2011) presented the results of a huge simulation study aimed at evaluating cluster recovery of mixture model clustering (MMC) both for the situation where the number of clusters is known and is unknown. They derived rather strong conclusions on the basis of this study, especially with regard to the good performance of…
Descriptors: Multivariate Analysis, Simulation, Research, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Brusco, Michael; Steinley, Douglas – Psychological Methods, 2010
Structural balance theory (SBT) has maintained a venerable status in the psychological literature for more than 5 decades. One important problem pertaining to SBT is the approximation of structural or generalized balance via the partitioning of the vertices of a signed graph into "K" clusters. This "K"-balance partitioning problem also has more…
Descriptors: Psychology, Mathematical Models, Stimuli, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Meade, Adam W.; Craig, S. Bartholomew – Psychological Methods, 2012
When data are collected via anonymous Internet surveys, particularly under conditions of obligatory participation (such as with student samples), data quality can be a concern. However, little guidance exists in the published literature regarding techniques for detecting careless responses. Previously several potential approaches have been…
Descriptors: Online Surveys, Data Collection, Research Problems, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Kohn, Hans-Friedrich; Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2010
The "p"-median clustering model represents a combinatorial approach to partition data sets into disjoint, nonhierarchical groups. Object classes are constructed around "exemplars", that is, manifest objects in the data set, with the remaining instances assigned to their closest cluster centers. Effective, state-of-the-art implementations of…
Descriptors: Computer Software, Psychological Studies, Data Analysis, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A. – Psychological Methods, 2009
Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…
Descriptors: Psychological Studies, Social Science Research, Reliability, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Bonett, Douglas G. – Psychological Methods, 2008
The currently available meta-analytic methods for correlations have restrictive assumptions. The fixed-effects methods assume equal population correlations and exhibit poor performance under correlation heterogeneity. The random-effects methods do not assume correlation homogeneity but are based on an equally unrealistic assumption that the…
Descriptors: Intervals, Multivariate Analysis, Meta Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Strobl, Carolin; Malley, James; Tutz, Gerhard – Psychological Methods, 2009
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
Descriptors: Artificial Intelligence, Decision Making, Psychological Studies, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J. – Psychological Methods, 2007
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
Descriptors: Multivariate Analysis, Computation, Nonparametric Statistics, Statistical Bias
Previous Page | Next Page ยป
Pages: 1  |  2