NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Armed Services Vocational…1
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sotoudeh, Ramina; DiMaggio, Paul – Sociological Methods & Research, 2023
Sociologists increasingly face choices among competing algorithms that represent reasonable approaches to the same task, with little guidance in choosing among them. We develop a strategy that uses simulated data to identify the conditions under which different methods perform well and applies what is learned from the simulations to predict which…
Descriptors: Algorithms, Simulation, Prediction, Correlation
Peer reviewed Peer reviewed
Parian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Huichao Li; Dan Li – International Journal of Web-Based Learning and Teaching Technologies, 2024
Based on a brief analysis of the current situation of university education management and research on intelligent algorithms, this article constructs a university education management system based on big data. For the clustering and prediction modules in higher education management, corresponding algorithms are used for optimization design. A…
Descriptors: Data, Ideology, Algorithms, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Waller, Niels G. – Journal of Educational and Behavioral Statistics, 2023
Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of…
Descriptors: Statistics Education, Multivariate Analysis, Factor Analysis, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Juanjuan Niu – International Journal of Web-Based Learning and Teaching Technologies, 2024
The internet, which is constantly advancing in technology, together with the rapidly changing internet communication technology terminals, has formed a new internet media, which has penetrated into all fields of human material life and spiritual life. This article proposes a design scheme for optimizing the impact of internet environment health on…
Descriptors: Influence of Technology, Internet, College Students, Ethical Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ruiperez-Valiente, Jose A.; Kim, Yoon Jeon; Baker, Ryan S.; Martinez, Pedro A.; Lin, Grace C. – IEEE Transactions on Learning Technologies, 2023
Previous research and experiences have indicated the potential that games have in educational settings. One of the possible uses of games in education is as game-based assessments (GBA), using game tasks to generate evidence about skills and content knowledge that can be valuable. There are different approaches in the literature to implement the…
Descriptors: Affordances, Game Based Learning, Student Evaluation, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Qing Wang; Xizhen Cai – Journal of Statistics and Data Science Education, 2024
Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is…
Descriptors: Active Learning, Class Activities, Classification, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Siu-Cheung Kong; Wei Shen – Interactive Learning Environments, 2024
Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected…
Descriptors: Student Characteristics, Predictor Variables, Comprehension, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Junfeng Man; Rongke Zeng; Xiangyang He; Hua Jiang – Knowledge Management & E-Learning, 2024
At present, the widespread use of online education platforms has attracted the attention of more and more people. The application of AI technology in online education platform makes multidimensional evaluation of students' ability become the trend of intelligent education in the future. Currently, most existing studies are based on traditional…
Descriptors: Cognitive Ability, Student Evaluation, Algorithms, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Ammar, Salwa; Kim, Min Jung; Masoumi, Amir H.; Tomoiaga, Alin – Decision Sciences Journal of Innovative Education, 2023
Over the past few years, academics have undertaken initiatives to bridge the gap between theory and practice in the ever-growing field of business analytics, including implementing real-life student projects in all shapes and forms. Every year since 2015, Manhattan College has invited student teams from across North America and elsewhere in the…
Descriptors: Business, Data Analysis, Business Administration Education, Intercollegiate Cooperation
Taylor V. Williams – ProQuest LLC, 2022
Clustering, a prevalent class of machine learning (ML) algorithms used in data mining and pattern-finding--has increasingly helped engineering education researchers and educators see and understand assessment patterns at scale. However, a challenge remains to make ML-enabled educational inferences that are useful and reliable for research or…
Descriptors: Multivariate Analysis, Data Analysis, Student Evaluation, Large Group Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Hiroto Namihira – IGI Global, 2024
Academic scholars face a difficult challenge when attempting to grasp the intricate world of mathematics. The complexity of mathematical concepts often lies hidden beneath layers of formulas and procedures, obscuring their true essence. Traditional educational resources often fall short in conveying the profound meaning behind these concepts,…
Descriptors: Information Technology, Visual Aids, Mathematics Education, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Hope E. Lackey; Rachel L. Sell; Gilbert L. Nelson; Thomas A. Bryan; Amanda M. Lines; Samuel A. Bryan – Journal of Chemical Education, 2023
The methodology and mathematical treatment of several classic multivariate methods for the analysis of spectroscopic data is demonstrated in a straightforward way that can be used as a basis for teaching an undergraduate introductory course on chemometric analysis. The multivariate techniques of classical least-squares (CLS), principal component…
Descriptors: Chemistry, Data Analysis, Optics, Lighting
Peer reviewed Peer reviewed
Direct linkDirect link
Abdulkadir Palanci; Rabia Meryem Yilmaz; Zeynep Turan – Education and Information Technologies, 2024
This study aims to reveal the main trends and findings of the studies examining the use of learning analytics in distance education. For this purpose, journal articles indexed in the SSCI index in the Web of Science database were reviewed, and a total of 400 journal articles were analysed within the scope of this study. The systematic review…
Descriptors: Learning Analytics, Distance Education, Educational Trends, Periodicals
Robert H. Kosar – ProQuest LLC, 2017
Principal component analysis is an important statistical technique for dimension reduction and exploratory data analysis. However, it is not robust to outliers and may obfuscate important data structure such as clustering. We propose a version of principal component analysis based on the robust L2E method. The technique seeks to find the principal…
Descriptors: Research Universities, Taxonomy, Multivariate Analysis, Factor Analysis
Previous Page | Next Page ยป
Pages: 1  |  2  |  3