NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Steiner, Peter M.; Kim, Jee-Seon – Society for Research on Educational Effectiveness, 2015
Despite the popularity of propensity score (PS) techniques they are not yet well studied for matching multilevel data where selection into treatment takes place among level-one units within clusters. This paper suggests a PS matching strategy that tries to avoid the disadvantages of within- and across-cluster matching. The idea is to first…
Descriptors: Computation, Outcomes of Treatment, Multivariate Analysis, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M.; Stapleton, Laura M. – Educational Psychology Review, 2016
Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the…
Descriptors: Hierarchical Linear Modeling, Statistical Analysis, Sample Size, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Gierl, Mark J.; Leighton, Jacqueline P.; Tan, Xuan – Journal of Educational Measurement, 2006
DETECT, the acronym for Dimensionality Evaluation To Enumerate Contributing Traits, is an innovative and relatively new nonparametric dimensionality assessment procedure used to identify mutually exclusive, dimensionally homogeneous clusters of items using a genetic algorithm ( Zhang & Stout, 1999). Because the clusters of items are mutually…
Descriptors: Program Evaluation, Cluster Grouping, Evaluation Methods, Multivariate Analysis