NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 128 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gani, Mohammed Osman; Ayyasamy, Ramesh Kumar; Sangodiah, Anbuselvan; Fui, Yong Tien – Education and Information Technologies, 2023
The automated classification of examination questions based on Bloom's Taxonomy (BT) aims to assist the question setters so that high-quality question papers are produced. Most studies to automate this process adopted the machine learning approach, and only a few utilised the deep learning approach. The pre-trained contextual and non-contextual…
Descriptors: Models, Artificial Intelligence, Natural Language Processing, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Gloria Gagliardi – International Journal of Language & Communication Disorders, 2024
Background: In the past few years there has been a growing interest in the employment of verbal productions as digital biomarkers, namely objective, quantifiable behavioural data that can be collected and measured by means of digital devices, allowing for a low-cost pathology detection, classification and monitoring. Numerous research papers have…
Descriptors: Natural Language Processing, Language Research, Pathology, Aging (Individuals)
Peer reviewed Peer reviewed
Direct linkDirect link
Xuelin Liu; Hua Zhang; Yue Cheng – International Journal of Web-Based Learning and Teaching Technologies, 2024
In this article, a dialogue text feature extraction model based on big data and machine learning is constructed, which transforms the high-dimensional space of text features into the low-dimensional space that is easy to process, so that the best feature words can be selected to represent the document set. Tests show that in most cases, the…
Descriptors: Artificial Intelligence, Data, Text Structure, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Salomé Do; Étienne Ollion; Rubing Shen – Sociological Methods & Research, 2024
The last decade witnessed a spectacular rise in the volume of available textual data. With this new abundance came the question of how to analyze it. In the social sciences, scholars mostly resorted to two well-established approaches, human annotation on sampled data on the one hand (either performed by the researcher, or outsourced to…
Descriptors: Computation, Social Sciences, Natural Language Processing, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Carvalho, Floran; Henriet, Julien; Greffier, Francoise; Betbeder, Marie-Laure; Leon-Henri, Dana – Journal of Education and e-Learning Research, 2023
This research is part of the Artificial Intelligence Virtual Trainer (AI-VT) project which aims to create a system that can identify the user's skills from a text by means of machine learning. AI-VT is a case-based reasoning learning support system can generate customized exercise lists that are specially adapted to user needs. To attain this…
Descriptors: Learning Processes, Algorithms, Artificial Intelligence, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
R., Akila Devi T.; Sathick, K. Javubar; Khan, A. Abdul Azeez; Raj, L. Arun – International Journal of Web-Based Learning and Teaching Technologies, 2021
Non-Factoid Question Answering (QA) is the next generation of textual QA systems, which gives passage level summaries for a natural language query, posted by the user. The main issue lies in the appropriateness of the generated summary. This paper proposes a framework for non-factoid QA system, which has three main components: (1) a deep neural…
Descriptors: Natural Language Processing, Artificial Intelligence, Classification, Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Diego G. Campos; Tim Fütterer; Thomas Gfrörer; Rosa Lavelle-Hill; Kou Murayama; Lars König; Martin Hecht; Steffen Zitzmann; Ronny Scherer – Educational Psychology Review, 2024
Systematic reviews and meta-analyses are crucial for advancing research, yet they are time-consuming and resource-demanding. Although machine learning and natural language processing algorithms may reduce this time and these resources, their performance has not been tested in education and educational psychology, and there is a lack of clear…
Descriptors: Artificial Intelligence, Algorithms, Computer System Design, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Kanwal Zahoor; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
Mobile application developers rely largely on user reviews for identifying issues in mobile applications and meeting the users' expectations. User reviews are unstructured, unorganized and very informal. Identifying and classifying issues by extracting required information from reviews is difficult due to a large number of reviews. To automate the…
Descriptors: Artificial Intelligence, Computer Oriented Programs, Courseware, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Soomaiya Hamid; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
E-learning is the process of sharing knowledge out of the traditional classrooms through different online tools using internet. The availability and use of these tools are not easy for every student. Many institutions gather e-learning feedback to know the problems of students to improve their systems. In e-learning systems, typically a high…
Descriptors: Feedback (Response), Electronic Learning, Automation, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Wei; Zhao, Yongyong; Wu, Yenchun Jim; Goh, Mark – International Journal of Science Education, Part B: Communication and Public Engagement, 2023
This study analyzed the influence of rhetoric in the endorsement text on the willingness of the crowd to participate in citizen science projects. Four categories of endorsers were studied: professors, students, industrial researchers, and amateur researchers. Using 1243 endorsement texts from 543 citizen science projects as the corpus, the effects…
Descriptors: Citizen Participation, Science Education, Rhetoric, Scientific Research
Peer reviewed Peer reviewed
Direct linkDirect link
Jennifer Campbell; Katie Ansell; Tim Stelzer – Physical Review Physics Education Research, 2024
Recent advances in publicly available natural language processors (NLP) may enhance the efficiency of analyzing student short-answer responses in physics education research (PER). We train a state-of-the-art NLP, IBM's Watson, and test its agreement with human coders using two different studies that gathered text responses in which students…
Descriptors: Artificial Intelligence, Physics, Natural Language Processing, Computer Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ryusei Munemura; Fumiya Okubo; Tsubasa Minematsu; Yuta Taniguchi; Atsushi Shimada – International Association for Development of the Information Society, 2024
Course planning is essential for academic success and the achievement of personal goals. Although universities provide course syllabi and curriculum maps for course planning, integrating and understanding these resources by the learners themselves for effective course planning is time-consuming and difficult. To address this issue, this study…
Descriptors: Curriculum Development, Artificial Intelligence, Natural Language Processing, Technology Uses in Education
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9