NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 196 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Dadi Ramesh; Suresh Kumar Sanampudi – European Journal of Education, 2024
Automatic essay scoring (AES) is an essential educational application in natural language processing. This automated process will alleviate the burden by increasing the reliability and consistency of the assessment. With the advances in text embedding libraries and neural network models, AES systems achieved good results in terms of accuracy.…
Descriptors: Scoring, Essays, Writing Evaluation, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Siqi Yi; Soo Young Rieh – Information and Learning Sciences, 2025
Purpose: This paper aims to critically review the intersection of searching and learning among children in the context of voice-based conversational agents (VCAs). This study presents the opportunities and challenges around reconfiguring current VCAs for children to facilitate human learning, generate diverse data to empower VCAs, and assess…
Descriptors: Literature Reviews, Children, Childrens Attitudes, Artificial Intelligence
Jonathan Rawski – ProQuest LLC, 2021
Human language is an incredibly rich yet incredibly constrained system. Learning and generalizing these systematic constraints from small, sparse, and underspecified data presents a fundamental inference problem. Therapidity and ease by which humans learn these constraints has made this a foundational study in cognitive science, linguistics, and…
Descriptors: Natural Language Processing, Algorithms, Grammar, Computational Linguistics
Ryan Daniel Budnick – ProQuest LLC, 2023
The past thirty years have shown a rise in models of language acquisition in which the state of the learner is characterized as a probability distribution over a set of non-stochastic grammars. In recent years, increasingly powerful models have been constructed as earlier models have failed to generalize well to increasingly complex and realistic…
Descriptors: Grammar, Feedback (Response), Algorithms, Computational Linguistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafael Ferreira Mello; Elyda Freitas; Luciano Cabral; Filipe Dwan Pereira; Luiz Rodrigues; Mladen Rakovic; Jackson Raniel; Dragan Gaševic – Journal of Learning Analytics, 2024
Learning analytics (LA) involves the measurement, collection, analysis, and reporting of data about learners and their contexts, aiming to understand and optimize both the learning process and the environments in which it occurs. Among many themes that the LA community considers, natural language processing (NLP) algorithms have been widely…
Descriptors: Literature Reviews, Learning Analytics, Natural Language Processing, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Maria Goldshtein; Jaclyn Ocumpaugh; Andrew Potter; Rod D. Roscoe – Grantee Submission, 2024
As language technologies have become more sophisticated and prevalent, there have been increasing concerns about bias in natural language processing (NLP). Such work often focuses on the effects of bias instead of sources. In contrast, this paper discusses how normative language assumptions and ideologies influence a range of automated language…
Descriptors: Language Attitudes, Computational Linguistics, Computer Software, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Jie Zhang – International Journal of Information and Communication Technology Education, 2024
This paper explores the development of an intelligent translation system for spoken English using Recurrent Neural Network (RNN) models. The fundamental principles of RNNs and their advantages in processing sequential data, particularly in handling time-dependent natural language data, are discussed. The methodology for constructing the…
Descriptors: Oral Language, Translation, Computational Linguistics, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Schneider, Johannes; Richner, Robin; Riser, Micha – International Journal of Artificial Intelligence in Education, 2023
Autograding short textual answers has become much more feasible due to the rise of NLP and the increased availability of question-answer pairs brought about by a shift to online education. Autograding performance is still inferior to human grading. The statistical and black-box nature of state-of-the-art machine learning models makes them…
Descriptors: Grading, Natural Language Processing, Computer Assisted Testing, Ethics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ardeshir Geranpayeh – Language Teaching Research Quarterly, 2023
The recent surge in the popularity of Large Language Models (LLM) for language assessment underscores the growing significance of cost-effective language evaluation in our increasingly digitalized society. This paper posits that the application of computational psychometrics can enable the incorporation of technology into language assessment,…
Descriptors: Computational Linguistics, Psychometrics, Second Language Learning, Second Language Instruction
C. M. Downey – ProQuest LLC, 2024
Advances in Natural Language Processing (NLP) over the past decade have largely been driven by the scale of data and computation used to train large neural network-based models. However, these techniques are inapplicable to the vast majority of the world's languages, which lack the vast digitized text datasets available for English and a few other…
Descriptors: Multilingualism, Natural Language Processing, Transfer of Training, Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Chia-Ju Lin; Wei-Sheng Wang; Hsin-Yu Lee; Yueh-Min Huang; Ting-Ting Wu – Journal of Educational Computing Research, 2025
This study uses a quasi-experimental design to explore the role of natural language processing (NLP) and speech recognition technologies in supporting teacher interventions during collaborative STEM activities. The Speech Recognition Keywords Analysis System (SRKAS) was developed to extract keywords from student discussions, enabling real-time…
Descriptors: Natural Language Processing, Computational Linguistics, Technology Uses in Education, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Hosseini, Mohammad; Resnik, David B.; Holmes, Kristi – Research Ethics, 2023
In this article, we discuss ethical issues related to using and disclosing artificial intelligence (AI) tools, such as ChatGPT and other systems based on large language models (LLMs), to write or edit scholarly manuscripts. Some journals, such as "Science," have banned the use of LLMs because of the ethical problems they raise concerning…
Descriptors: Ethics, Artificial Intelligence, Computational Linguistics, Natural Language Processing
Peer reviewed Peer reviewed
Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  14