NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Parents1
Laws, Policies, & Programs
Assessments and Surveys
Wisconsin Card Sorting Test1
What Works Clearinghouse Rating
Showing 1 to 15 of 36 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Song Yang; Ying Dong; Zhong Gen Yu – International Journal of Information and Communication Technology Education, 2024
AI chatbots, e.g. ChatGPT, are becoming increasingly popular in education as a means to enhance student learning experiences and improve teaching efficiency. This study utilizes NVivo 12 Plus to examine the role of AI chatbots in education, ethical considerations, and sentimental analysis regarding the utilization of ChatGPT in education. ChatGPT…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Jessie S. Barrot – Technology, Knowledge and Learning, 2024
This emerging technology report delves into the role of ChatGPT, an OpenAI conversational AI, in language learning. The initial section introduces ChatGPT's nature and highlights its features, including accessibility, personalization, immersive learning, and instant feedback, which render it a valuable asset for language learners and educators…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Language Acquisition
Ryan Daniel Budnick – ProQuest LLC, 2023
The past thirty years have shown a rise in models of language acquisition in which the state of the learner is characterized as a probability distribution over a set of non-stochastic grammars. In recent years, increasingly powerful models have been constructed as earlier models have failed to generalize well to increasingly complex and realistic…
Descriptors: Grammar, Feedback (Response), Algorithms, Computational Linguistics
Tsiola, Anna – ProQuest LLC, 2021
Naturalistic language learning is contextually grounded. When people learn their first (L1) and often their second (L2) language, they do so in various contexts. In this dissertation I examine the effect of various contexts on language development. Part 1 describes the effects of textual, linguistic context in reading. I employed an eye-tracking…
Descriptors: Natural Language Processing, Second Language Learning, Language Processing, Language Acquisition
Peer reviewed Peer reviewed
Direct linkDirect link
Mahowald, Kyle; Kachergis, George; Frank, Michael C. – First Language, 2020
Ambridge calls for exemplar-based accounts of language acquisition. Do modern neural networks such as transformers or word2vec -- which have been extremely successful in modern natural language processing (NLP) applications -- count? Although these models often have ample parametric complexity to store exemplars from their training data, they also…
Descriptors: Models, Language Processing, Computational Linguistics, Language Acquisition
Peer reviewed Peer reviewed
Direct linkDirect link
Monteiro, Kátia; Crossley, Scott; Botarleanu, Robert-Mihai; Dascalu, Mihai – Language Testing, 2023
Lexical frequency benchmarks have been extensively used to investigate second language (L2) lexical sophistication, especially in language assessment studies. However, indices based on semantic co-occurrence, which may be a better representation of the experience language users have with lexical items, have not been sufficiently tested as…
Descriptors: Second Language Learning, Second Languages, Native Language, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Unger, Layla; Yim, Hyungwook; Savic, Olivera; Dennis, Simon; Sloutsky, Vladimir M. – Developmental Science, 2023
Recent years have seen a flourishing of Natural Language Processing models that can mimic many aspects of human language fluency. These models harness a simple, decades-old idea: It is possible to learn a lot about word meanings just from exposure to language, because words similar in meaning are used in language in similar ways. The successes of…
Descriptors: Natural Language Processing, Language Usage, Vocabulary Development, Linguistic Input
Peer reviewed Peer reviewed
Direct linkDirect link
Schuler, Kathryn D.; Kodner, Jordan; Caplan, Spencer – First Language, 2020
In 'Against Stored Abstractions,' Ambridge uses neural and computational evidence to make his case against abstract representations. He argues that storing only exemplars is more parsimonious -- why bother with abstraction when exemplar models with on-the-fly calculation can do everything abstracting models can and more -- and implies that his…
Descriptors: Language Processing, Language Acquisition, Computational Linguistics, Linguistic Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Hang; Frank, Michael C.; Kulkarni, Vivek; Fourtassi, Abdellah – Cognitive Science, 2022
The linguistic input children receive across early childhood plays a crucial role in shaping their knowledge about the world. To study this input, researchers have begun applying distributional semantic models to large corpora of child-directed speech, extracting various patterns of word use/co-occurrence. Previous work using these models has not…
Descriptors: Caregivers, Caregiver Child Relationship, Linguistic Input, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Leydi Johana Chaparro-Moreno; Hugo Gonzalez Villasanti; Laura M. Justice; Jing Sun; Mary Beth Schmitt – Journal of Speech, Language, and Hearing Research, 2024
Purpose: This study examines the accuracy of Interaction Detection in Early Childhood Settings (IDEAS), a program that automatically transcribes audio files and estimates linguistic units relevant to speech-language therapy, including part-of-speech units that represent features of language complexity, such as adjectives and coordinating…
Descriptors: Speech Language Pathology, Allied Health Personnel, Speech Therapy, Children
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Antonie Alm; Yuki Watanabe – Iranian Journal of Language Teaching Research, 2023
This paper explores the implications of ChatGPT for language teaching through the lens of Paulo Freire's critical pedagogy. A review of recent research on ChatGPT reveals promising opportunities for personalised and interactive learning, but also risks of propagating cultural bias, plagiarism and passive learning. Freire's concepts of 'banking'…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Language Acquisition
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Wu; Shan Li; Ying Gao; Jinta Weng; Guozhu Ding – Education and Information Technologies, 2024
Natural language processing (NLP) has captivated the attention of educational researchers over the past three decades. In this study, a total of 2,480 studies were retrieved through a comprehensive literature search. We used neural topic modeling and pre-trained language modeling to explore the research topics pertaining to the application of NLP…
Descriptors: Natural Language Processing, Educational Research, Research Design, Educational Trends
Peer reviewed Peer reviewed
Direct linkDirect link
Hanbing Xue; Weishan Liu – SAGE Open, 2025
The application of natural language processing (NLP) technology in the field of education has attracted considerable attention. This study takes 716 articles from the Web of Science database from 1998 to 2023 as its research sample. Using bibliometrics as the theoretical foundation, and employing methods such as literature review and knowledge…
Descriptors: Bibliometrics, Natural Language Processing, Technology Uses in Education, Educational Trends
Alex Warstadt – ProQuest LLC, 2022
Data-driven learning uncontroversially plays a role in human language acquisition--how large a role is a matter of much debate. The success of artificial neural networks in NLP in recent years calls for a re-evaluation of our understanding of the possibilities for learning grammar from data alone. This dissertation argues the case for using…
Descriptors: Language Acquisition, Artificial Intelligence, Computational Linguistics, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Sterrett, Kyle; Freeman, Stephanny; Hayashida, Kristen; Kim, Joanne J.; Paparella, Tanya – Young Exceptional Children, 2023
Preverbal communication means any social behavior that occurs before children communicate verbally. Generally, these communicative behaviors are categorized into two ways: as behavior regulation (BR) or joint attention (JA) skills. BR, also referred to as requesting, involves the use of behaviors to gain something or receive assistance (Mundy et…
Descriptors: Verbal Communication, Intervention, Behavior Development, Natural Language Processing
Previous Page | Next Page »
Pages: 1  |  2  |  3