Publication Date
In 2025 | 3 |
Since 2024 | 11 |
Since 2021 (last 5 years) | 24 |
Since 2016 (last 10 years) | 29 |
Since 2006 (last 20 years) | 34 |
Descriptor
Natural Language Processing | 36 |
Test Construction | 36 |
Test Items | 20 |
Artificial Intelligence | 16 |
Computer Assisted Testing | 11 |
Foreign Countries | 9 |
Multiple Choice Tests | 9 |
Automation | 8 |
Technology Uses in Education | 8 |
Difficulty Level | 6 |
Language Tests | 6 |
More ▼ |
Source
Author
Deane, Paul | 2 |
Abner Rubin | 1 |
Aldabe, Itziar | 1 |
Amir Hadifar | 1 |
Andrew M. Olney | 1 |
Anna Lucia Paoletti | 1 |
Baldwin, Peter | 1 |
Bejar, Isaac I. | 1 |
Brunnert, Kim | 1 |
Burstein, Jill C. | 1 |
Carmen Köhler | 1 |
More ▼ |
Publication Type
Journal Articles | 30 |
Reports - Research | 21 |
Reports - Descriptive | 7 |
Reports - Evaluative | 5 |
Tests/Questionnaires | 5 |
Speeches/Meeting Papers | 4 |
Information Analyses | 3 |
Numerical/Quantitative Data | 1 |
Opinion Papers | 1 |
Education Level
Higher Education | 12 |
Postsecondary Education | 11 |
Secondary Education | 2 |
Elementary Education | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
China | 2 |
Iowa | 2 |
Africa | 1 |
Alabama | 1 |
Arizona | 1 |
Arkansas | 1 |
Australia | 1 |
California | 1 |
Connecticut | 1 |
Europe | 1 |
Georgia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Graduate Record Examinations | 1 |
Test of English as a Foreign… | 1 |
What Works Clearinghouse Rating
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
A Method for Generating Course Test Questions Based on Natural Language Processing and Deep Learning
Hei-Chia Wang; Yu-Hung Chiang; I-Fan Chen – Education and Information Technologies, 2024
Assessment is viewed as an important means to understand learners' performance in the learning process. A good assessment method is based on high-quality examination questions. However, generating high-quality examination questions manually by teachers is a time-consuming task, and it is not easy for students to obtain question banks. To solve…
Descriptors: Natural Language Processing, Test Construction, Test Items, Models
Samah AlKhuzaey; Floriana Grasso; Terry R. Payne; Valentina Tamma – International Journal of Artificial Intelligence in Education, 2024
Designing and constructing pedagogical tests that contain items (i.e. questions) which measure various types of skills for different levels of students equitably is a challenging task. Teachers and item writers alike need to ensure that the quality of assessment materials is consistent, if student evaluations are to be objective and effective.…
Descriptors: Test Items, Test Construction, Difficulty Level, Prediction
Semere Kiros Bitew; Amir Hadifar; Lucas Sterckx; Johannes Deleu; Chris Develder; Thomas Demeester – IEEE Transactions on Learning Technologies, 2024
Multiple-choice questions (MCQs) are widely used in digital learning systems, as they allow for automating the assessment process. However, owing to the increased digital literacy of students and the advent of social media platforms, MCQ tests are widely shared online, and teachers are continuously challenged to create new questions, which is an…
Descriptors: Multiple Choice Tests, Computer Assisted Testing, Test Construction, Test Items
Olney, Andrew M. – Grantee Submission, 2022
Multi-angle question answering models have recently been proposed that promise to perform related tasks like question generation. However, performance on related tasks has not been thoroughly studied. We investigate a leading model called Macaw on the task of multiple choice question generation and evaluate its performance on three angles that…
Descriptors: Test Construction, Multiple Choice Tests, Test Items, Models
Mohammad Hmoud; Hadeel Swaity; Eman Anjass; Eva María Aguaded-Ramírez – Electronic Journal of e-Learning, 2024
This research aimed to develop and validate a rubric to assess Artificial Intelligence (AI) chatbots' effectiveness in accomplishing tasks, particularly within educational contexts. Given the rapidly growing integration of AI in various sectors, including education, a systematic and robust tool for evaluating AI chatbot performance is essential.…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Test Construction
Kate E. Walton; Cristina Anguiano-Carrasco – ACT, Inc., 2024
Large language models (LLMs), such as ChatGPT, are becoming increasingly prominent. Their use is becoming more and more popular to assist with simple tasks, such as summarizing documents, translating languages, rephrasing sentences, or answering questions. Reports like McKinsey's (Chui, & Yee, 2023) estimate that by implementing LLMs,…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Test Construction
Edmund De Leon Evangelista – Contemporary Educational Technology, 2025
The rapid advancement of artificial intelligence (AI) technologies, particularly OpenAI's ChatGPT, has significantly impacted higher education institutions (HEIs), offering opportunities and challenges. While these tools enhance personalized learning and content generation, they threaten academic integrity, especially in assessment environments.…
Descriptors: Artificial Intelligence, Integrity, Educational Strategies, Natural Language Processing
Baldwin, Peter; Yaneva, Victoria; Mee, Janet; Clauser, Brian E.; Ha, Le An – Journal of Educational Measurement, 2021
In this article, it is shown how item text can be represented by (a) 113 features quantifying the text's linguistic characteristics, (b) 16 measures of the extent to which an information-retrieval-based automatic question-answering system finds an item challenging, and (c) through dense word representations (word embeddings). Using a random…
Descriptors: Natural Language Processing, Prediction, Item Response Theory, Reaction Time
Haug, Tobias; Mann, Wolfgang; Holzknecht, Franz – Sign Language Studies, 2023
This study is a follow-up to previous research conducted in 2012 on computer-assisted language testing (CALT) that applied a survey approach to investigate the use of technology in sign language testing worldwide. The goal of the current study was to replicate the 2012 study and to obtain updated information on the use of technology in sign…
Descriptors: Computer Assisted Testing, Sign Language, Natural Language Processing, Language Tests
Andrew M. Olney – Grantee Submission, 2023
Multiple choice questions are traditionally expensive to produce. Recent advances in large language models (LLMs) have led to fine-tuned LLMs that generate questions competitive with human-authored questions. However, the relative capabilities of ChatGPT-family models have not yet been established for this task. We present a carefully-controlled…
Descriptors: Test Construction, Multiple Choice Tests, Test Items, Algorithms
Micir, Ian; Swygert, Kimberly; D'Angelo, Jean – Journal of Applied Testing Technology, 2022
The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing…
Descriptors: Artificial Intelligence, Man Machine Systems, Accuracy, Efficiency
Valentina Albano; Donatella Firmani; Luigi Laura; Jerin George Mathew; Anna Lucia Paoletti; Irene Torrente – Journal of Learning Analytics, 2023
Multiple-choice questions (MCQs) are widely used in educational assessments and professional certification exams. Managing large repositories of MCQs, however, poses several challenges due to the high volume of questions and the need to maintain their quality and relevance over time. One of these challenges is the presence of questions that…
Descriptors: Natural Language Processing, Multiple Choice Tests, Test Items, Item Analysis
Cole, Brian S.; Lima-Walton, Elia; Brunnert, Kim; Vesey, Winona Burt; Raha, Kaushik – Journal of Applied Testing Technology, 2020
Automatic item generation can rapidly generate large volumes of exam items, but this creates challenges for assembly of exams which aim to include syntactically diverse items. First, we demonstrate a diminishing marginal syntactic return for automatic item generation using a saturation detection approach. This analysis can help users of automatic…
Descriptors: Artificial Intelligence, Automation, Test Construction, Test Items
Shuqiong Luo; Di Zou – European Journal of Education, 2025
Recent AI-based language learning research highlights learners' crucial role, yet university learner readiness in ChatGPT-based English learning remains unexplored. Accordingly, this current research attempted to develop and validate a tool to evaluate university learner readiness for ChatGPT-assisted English learning (LRCEL) to address the…
Descriptors: College Students, Readiness, Artificial Intelligence, Natural Language Processing