NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Vassoyan, Jean; Vie, Jill-Jênn – International Educational Data Mining Society, 2023
Adaptive learning is an area of educational technology that consists in delivering personalized learning experiences to address the unique needs of each learner. An important subfield of adaptive learning is learning path personalization: it aims at designing systems that recommend sequences of educational activities to maximize students' learning…
Descriptors: Reinforcement, Networks, Simulation, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zur, Amir; Applebaum, Isaac; Nardo, Jocelyn Elizabeth; DeWeese, Dory; Sundrani, Sameer; Salehi, Shima – International Educational Data Mining Society, 2023
Detailed learning objectives foster an effective and equitable learning environment by clarifying what instructors expect students to learn, rather than requiring students to use prior knowledge to infer these expectations. When questions are labeled with relevant learning goals, students understand which skills are tested by those questions.…
Descriptors: Equal Education, Prior Learning, Educational Objectives, Chemistry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsutsumi, Emiko; Kinoshita, Ryo; Ueno, Maomi – International Educational Data Mining Society, 2021
Knowledge tracing (KT), the task of tracking the knowledge state of each student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines Item Response Theory (IRT) with a deep learning model, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Yuhao; Li, Xihua; Cao, Yunbo; Zhao, Xuemin; Ye, Qing; Lv, Jiancheng – International Educational Data Mining Society, 2021
In educational applications, "Knowledge Tracing" (KT) has been widely studied for decades as it is considered a fundamental task towards adaptive online learning. Among proposed KT methods, Deep Knowledge Tracing (DKT) and its variants are by far the most effective ones due to the high flexibility of the neural network. However, DKT…
Descriptors: Online Courses, Computer Assisted Instruction, Networks, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Weiyu; Lan, Andrew S.; Cao, Da; Brinton, Christopher; Chiang, Mung – International Educational Data Mining Society, 2018
Knowledge of prerequisite dependencies is crucial to several aspects of learning, from the organization of learning content to the selection of personalized remediation or enrichment for each learner. As the amount of content is scaled up, however, it becomes increasingly difficult to manually specify all of the prerequisites among the different…
Descriptors: Behavioral Science Research, Measures (Individuals), Online Courses, Prerequisites
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Klingler, Severin; Wampfler, Rafael; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2017
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high volumes from intelligent tutoring systems and massive open online courses. In this paper, we…
Descriptors: Classification, Artificial Intelligence, Networks, Learning Disabilities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhao, Siyuan; Heffernan, Neil – International Educational Data Mining Society, 2017
Personalized learning considers that the causal effects of a studied learning intervention may differ for the individual student. Making the inference about causal effects of studies interventions is a central problem. In this paper we propose the Residual Counterfactual Networks (RCN) for answering counterfactual inference questions, such as…
Descriptors: Computation, Outcomes of Treatment, Networks, Randomized Controlled Trials
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karimi, Hamid; Derr, Tyler; Huang, Jiangtao; Tang, Jiliang – International Educational Data Mining Society, 2020
Online learning has attracted a large number of participants and is increasingly becoming very popular. However, the completion rates for online learning are notoriously low. Further, unlike traditional education systems, teachers, if any, are unable to comprehensively evaluate the learning gain of each student through the online learning…
Descriptors: Online Courses, Academic Achievement, Prediction, Teaching Methods
Eagle, Michael; Hicks, Drew; Barnes, Tiffany – International Educational Data Mining Society, 2015
Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…
Descriptors: Problem Solving, Prediction, Intelligent Tutoring Systems, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rowe, Elizabeth; Eagle, Michael; Hicks, Drew – International Educational Data Mining Society, 2016
Building on prior work visualizing player behavior using interaction networks [1], we examined whether measures of implicit science learning collected during gameplay were significantly related to changes in external pre-post assessments of the same constructs. As part of a national implementation study, we collected data from 329 high school…
Descriptors: Incidental Learning, Educational Games, Scientific Concepts, Optics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals