NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
High Schools1
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 36 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Goto, Jun-Ichi; Fujii, Satoshi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko; Yamazaki, Yoshihiko – Learning & Memory, 2022
In hippocampal CA1 neurons of wild-type mice, a short tetanus (15 or 20 pulses at 100 Hz) or a standard tetanus (100 pulses at 100 Hz) to a naive input pathway induces long-term potentiation (LTP) of the responses. Low-frequency stimulation (LFS; 1000 pulses at 1 Hz) 60 min after the standard tetanus reverses LTP (depotentiation [DP]), while LFS…
Descriptors: Animals, Brain Hemisphere Functions, Stimuli, Neurology
Peer reviewed Peer reviewed
Direct linkDirect link
Yokose, Jun; Marks, William D.; Yamamoto, Naoki; Ogawa, Sachie K.; Kitamura, Takashi – Learning & Memory, 2021
Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial…
Descriptors: Associative Learning, Brain Hemisphere Functions, Neurological Organization, Stimuli
Peer reviewed Peer reviewed
Direct linkDirect link
Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko – Learning & Memory, 2020
In CA1 neurons of guinea pig hippocampal slices, long-term potentiation (LTP) was induced in field excitatory postsynaptic potentials (EPSPs) or population spikes (PSs) by the delivery of high-frequency stimulation (HFS, 100 pulses at 100 Hz) to CA1 synapses, and was reversed by the delivery of a train of low-frequency stimulation (LFS, 1000…
Descriptors: Brain, Animals, Brain Hemisphere Functions, Stimuli
Peer reviewed Peer reviewed
Direct linkDirect link
le Feber, Joost; Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle – Learning & Memory, 2015
During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and…
Descriptors: Memory, Brain Hemisphere Functions, Neurological Organization, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Schacher, Samuel; Hu, Jiang-Yuan – Learning & Memory, 2014
An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for…
Descriptors: Brain Hemisphere Functions, Stimuli, Molecular Structure, Neurological Organization
Peer reviewed Peer reviewed
Direct linkDirect link
Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda – Learning & Memory, 2014
Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…
Descriptors: Conditioning, Stimuli, Cues, Rewards
Peer reviewed Peer reviewed
Direct linkDirect link
Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee – Learning & Memory, 2014
In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…
Descriptors: Conditioning, Brain Hemisphere Functions, Sensory Experience, Cues
Peer reviewed Peer reviewed
Direct linkDirect link
Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T. – Learning & Memory, 2014
We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…
Descriptors: Classical Conditioning, Neurological Organization, Animals, Behavioral Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Oros, Nicolas; Chiba, Andrea A.; Nitz, Douglas A.; Krichmar, Jeffrey L. – Learning & Memory, 2014
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus…
Descriptors: Stimuli, Cognitive Processes, Attention, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Campatelli, G.; Federico, R. R.; Apicella, F.; Sicca, F.; Muratori, F. – Research in Autism Spectrum Disorders, 2013
Face processing has been studied and discussed in depth during previous decades in several branches of science, and evidence from research supports the view that this process is a highly specialized brain function. Several authors argue that difficulties in the use and comprehension of the information conveyed by human faces could represent a core…
Descriptors: Brain, Autism, Nonverbal Communication, Human Body
Peer reviewed Peer reviewed
Direct linkDirect link
Tottenham, Nim; Shapiro, Mor; Telzer, Eva H.; Humphreys, Kathryn L. – Developmental Science, 2012
In altricial species, like the human, the caregiver, very often the mother, is one of the most potent stimuli during development. The distinction between mothers and other adults is learned early in life and results in numerous behaviors in the child, most notably mother-approach and stranger wariness. The current study examined the influence of…
Descriptors: Stimuli, Mothers, Brain, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Debrabant, Julie; Gheysen, Freja; Caeyenberghs, Karen; Van Waelvelde, Hilde; Vingerhoets, Guy – Research in Developmental Disabilities: A Multidisciplinary Journal, 2013
A dysfunction in predictive motor timing is put forward to underlie DCD-related motor problems. Predictive timing allows for the pre-selection of motor programmes (except "program" in computers) in order to decrease processing load and facilitate reactions. Using functional magnetic resonance imaging (fMRI), this study investigated the neural…
Descriptors: Brain, Visual Stimuli, Reaction Time, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto – Journal of Cognitive Neuroscience, 2011
Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…
Descriptors: Stimuli, Semantics, Recognition (Psychology), Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Michele T. Diaz; Larson J. Hogstrom – Journal of Cognitive Neuroscience, 2011
Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify…
Descriptors: Sentences, Brain Hemisphere Functions, Stimuli, Figurative Language
Peer reviewed Peer reviewed
Direct linkDirect link
Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M. – Brain and Cognition, 2010
Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related…
Descriptors: Brain Hemisphere Functions, Stimuli, Semantics, Cognitive Processes
Previous Page | Next Page ยป
Pages: 1  |  2  |  3