Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 11 |
| Since 2007 (last 20 years) | 27 |
Descriptor
| Bayesian Statistics | 35 |
| Nonparametric Statistics | 35 |
| Models | 9 |
| Data Analysis | 7 |
| Item Response Theory | 7 |
| Regression (Statistics) | 7 |
| Simulation | 6 |
| Statistical Analysis | 6 |
| Computation | 5 |
| Correlation | 5 |
| Probability | 5 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 20 |
| Reports - Research | 19 |
| Reports - Evaluative | 8 |
| Dissertations/Theses -… | 3 |
| Speeches/Meeting Papers | 2 |
| Information Analyses | 1 |
| Numerical/Quantitative Data | 1 |
| Reports - Descriptive | 1 |
| Tests/Questionnaires | 1 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 3 |
| Elementary Secondary Education | 2 |
| Secondary Education | 2 |
| High Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
| Trends in International… | 2 |
| ACT Assessment | 1 |
| National Longitudinal Survey… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Varas, Inés M.; González, Jorge; Quintana, Fernando A. – Journal of Educational and Behavioral Statistics, 2020
Equating is a family of statistical models and methods used to adjust scores on different test forms so that they can be comparable and used interchangeably. Equated scores are obtained estimating the equating transformation function, which maps the scores on the scale of one test form into their equivalents on the scale of other one. All the…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Equated Scores, Statistical Analysis
Gongchang, Yueban; Wang, Yibing – AERA Online Paper Repository, 2020
Location tracking devices are becoming increasingly popular in practice to study movement of customers or track inventory. However, using location tracking devices in education contexts is quite novel. In this paper, we present a robust Bayesian nonparametric mixture model that clusters location data. We successfully apply this model on location…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Multivariate Analysis, Interaction
Gilraine, Michael; Gu, Jiaying; McMillan, Robert – National Bureau of Economic Research, 2020
This paper proposes a new methodology for estimating teacher value-added. Rather than imposing a normality assumption on unobserved teacher quality (as in the standard empirical Bayes approach), our nonparametric estimator permits the underlying distribution to be estimated directly and in a computationally feasible way. The resulting estimates…
Descriptors: Value Added Models, Teacher Effectiveness, Nonparametric Statistics, Computation
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Liu, Yang; Wang, Xiaojing – Journal of Educational and Behavioral Statistics, 2020
Parametric methods, such as autoregressive models or latent growth modeling, are usually inflexible to model the dependence and nonlinear effects among the changes of latent traits whenever the time gap is irregular and the recorded time points are individually varying. Often in practice, the growth trend of latent traits is subject to certain…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Regression (Statistics), Item Response Theory
Karabatsos, George – Research Synthesis Methods, 2018
There is a growing concern that much of the published research literature is distorted by the pursuit of statistically significant results. In a seminal article, Ioannidis and Trikalinos (2007, "Clinical Trials") proposed an omnibus (I&T) test for significance chasing (SC) biases. This test compares the observed number of studies…
Descriptors: Nonparametric Statistics, Bayesian Statistics, Bias, Statistical Significance
Ayanwale, Musa Adekunle; Isaac-Oloniyo, Flourish O.; Abayomi, Funmilayo R. – International Journal of Evaluation and Research in Education, 2020
This study investigated dimensionality of Binary Response Items through a non-parametric technique of Item Response Theory measurement framework. The study used causal comparative research type of nonexperimental design. The sample consisted of 5,076 public senior secondary school examinees (SSS3) between the age of 14-16 years from 45 schools,…
Descriptors: Test Items, Item Response Theory, Bayesian Statistics, Nonparametric Statistics
Khajah, Mohammad M. – ProQuest LLC, 2017
I study the impact of novel game manipulations on user engagement using principled computational methods. Maximizing user engagement is important because it results in more profitable games in the commercial arena and better learning outcomes in the educational arena. It is then perhaps unsurprising that the study of user engagement is well…
Descriptors: Nonparametric Statistics, Models, Learner Engagement, Bayesian Statistics
Makela, Susanna; Si, Yajuan; Gelman, Andrew – Grantee Submission, 2018
Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design-based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to…
Descriptors: Bayesian Statistics, Statistical Inference, Sampling, Probability
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Liang, Longjuan; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2015
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not fit the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating…
Descriptors: Item Response Theory, Statistical Analysis, Goodness of Fit, Bayesian Statistics
Park, Jungkyu; Yu, Hsiu-Ting – Educational and Psychological Measurement, 2016
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
Descriptors: Hierarchical Linear Modeling, Nonparametric Statistics, Data Analysis, Simulation
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer – Grantee Submission, 2016
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis…
Descriptors: Bayesian Statistics, Mathematical Models, Causal Models, Statistical Bias
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G. – Research Synthesis Methods, 2015
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
Descriptors: Bayesian Statistics, Meta Analysis, Prediction, Nonparametric Statistics
Arenson, Ethan A.; Karabatsos, George – Grantee Submission, 2017
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
Descriptors: Bayesian Statistics, Item Response Theory, Nonparametric Statistics, Models

Peer reviewed
Direct link
