NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 107 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cereceda, José Luis – International Journal of Mathematical Education in Science and Technology, 2020
In this paper, we first focus on the sum of powers of the first n positive odd integers, T[subscript k](n)=1[superscript k]+3[superscript k]+5[superscript k]+...+(2n-1)[superscript k], and derive in an elementary way a polynomial formula for T[subscript k](n) in terms of a specific type of generalized Stirling numbers. Then we consider the sum of…
Descriptors: Numbers, Arithmetic, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Bowling, Tom – Australian Mathematics Education Journal, 2020
A test method is described for determining the divisibility of non-negative integers by a prime number. The test uses an integer multiplying factor that is defined for each prime, designated as [beta], to reduce the non-negative integer that is being tested by an order of magnitude in each of a sequence of steps to obtain a series of new numbers.…
Descriptors: Mathematics Instruction, Teaching Methods, Division, Arithmetic
Peer reviewed Peer reviewed
Direct linkDirect link
Pruitt, Kenny; Shannon, A. G. – International Journal of Mathematical Education in Science and Technology, 2018
The purpose of this paper is to consider analogues of the twin-prime conjecture in various classes within modular rings.
Descriptors: Mathematics Instruction, Numbers, Teaching Methods, Arithmetic
Peer reviewed Peer reviewed
Direct linkDirect link
Bishop, Jessica Pierson; Lamb, Lisa L.; Whitacre, Ian; Philipp, Randolph A.; Schappelle, Bonnie P. – Mathematics Teacher: Learning and Teaching PK-12, 2022
In this article, the authors share frameworks for problem types and students' reasoning about integers. The authors found that all ways of reasoning (WoRs) were used across grade levels and that specific problem types tended to evoke particular WoRs. Specifically, students were more likely to use analogy-based reasoning on all-negatives problems…
Descriptors: Thinking Skills, Problem Solving, Mathematics Instruction, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Varma, Sashank; Blair, Kristen P.; Schwartz, Daniel L. – Research in Mathematics Education, 2019
This chapter considers psychological and neuroscience research on how people understand the integers, and how educators can foster this understanding. The core proposal is that new, abstract mathematical concepts are built upon known, concrete mathematical concepts. For the integers, the relevant foundation is the natural numbers, which are…
Descriptors: Cognitive Science, Mathematical Concepts, Numbers, Psychological Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Howe, Roger – ZDM: The International Journal on Mathematics Education, 2019
This paper makes a proposal, from the perspective of a research mathematician interested in mathematics education, for broadening and deepening whole number arithmetic instruction, to make it more relevant for the twenty-first century, in particular, to enable students to deal with large numbers, arguably an essential skill for modern citizenship.…
Descriptors: Number Concepts, Numbers, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Deihl, Steve; Markinson, Mara P. – Journal of Mathematics Education at Teachers College, 2019
High school students often ask questions about the nature of infinity. When contemplating what the "largest number" is, or discussing the speed of light, students bring their own ideas about infinity and asymptotes into the conversation. These are popular ideas, but formal ideas about the nature of mathematical sets, or "set…
Descriptors: High School Students, Mathematical Concepts, Algebra, Secondary School Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
AsKew, A.; Kennedy, K.; Klima, V. – PRIMUS, 2018
In this article we discuss relationships between the cyclic group Z[subscript 12] and Western tonal music that is embedded in a 12-note division of the octave. We then offer several questions inviting students to explore extensions of these relationships to other "n"-note octave divisions. The answers to most questions require only basic…
Descriptors: Arithmetic, Music Theory, Correlation, Numbers
Peer reviewed Peer reviewed
Direct linkDirect link
Firozzaman, Firoz; Firoz, Fahim – International Journal of Mathematical Education in Science and Technology, 2017
Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the…
Descriptors: Mathematics Instruction, Numbers, Mathematical Concepts, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Garcia, Stephan Ramon – PRIMUS, 2017
A second course in linear algebra that goes beyond the traditional lower-level curriculum is increasingly important for students of the mathematical sciences. Although many applications involve only real numbers, a solid understanding of complex arithmetic often sheds significant light. Many instructors are unaware of the opportunities afforded by…
Descriptors: Algebra, Mathematics Instruction, Numbers, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Kontorovich, Igor' – For the Learning of Mathematics, 2018
How do students cope with and make sense of polysemy in mathematics? Zazkis (1998) tackled these questions in the case of 'divisor' and 'quotient'. When requested to determine the quotient in the division of 12 by 5, some of her pre-service teachers operated in the domain of integers and argued for 2, while others adhered to rational numbers and…
Descriptors: Mathematics Instruction, Mathematical Concepts, Concept Formation, Arithmetic
Schifter, Deborah; Bastable, Virginia; Russell, Susan Jo – National Council of Teachers of Mathematics, 2018
The "Reasoning Algebraically about Operations Casebook" was developed as the key resource for participants' Developing Mathematical Ideas seminar experience. The thirty-four cases, written by teachers describing real situations and actual student thinking in their classrooms, provide the basis of each session's investigation into the…
Descriptors: Mathematics Instruction, Elementary Schools, Middle Schools, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Turton, Roger – Mathematics Teacher, 2016
"Mathematical Lens" uses photographs as a springboard for mathematical inquiry and appears in every issue of "Mathematics Teacher." Recently while dismantling an old wooden post-and-rail fence, Roger Turton noticed something very interesting when he piled up the posts and rails together in the shape of a prism. The total number…
Descriptors: Mathematics, Mathematics Instruction, Teaching Methods, Photography
Peer reviewed Peer reviewed
Direct linkDirect link
Turner, Paul; Thornton, Steve – Australian Senior Mathematics Journal, 2017
This article draws on some ideas explored during and after a writing workshop to develop classroom resources for the reSolve: Mathematics by Inquiry (www.resolve.edu.au) project. The project develops classroom and professional learning resources that will promote a spirit of inquiry in school mathematics from Foundation to year ten. The…
Descriptors: Mathematics Instruction, Inquiry, Teaching Methods, Elementary Secondary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Leinbach, L. Carl – International Journal for Technology in Mathematics Education, 2015
This paper illustrates a TI N-Spire .tns file created by the author for generating continued fraction representations of real numbers and doing arithmetic with them. The continued fraction representation provides an alternative to the decimal representation. The .tns file can be used as tool for studying continued fractions and their properties as…
Descriptors: Mathematics Instruction, Mathematical Concepts, Arithmetic, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8