Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 24 |
Descriptor
Operant Conditioning | 30 |
Animals | 22 |
Brain | 10 |
Memory | 10 |
Classical Conditioning | 9 |
Reinforcement | 9 |
Brain Hemisphere Functions | 6 |
Rewards | 6 |
Associative Learning | 5 |
Experiments | 5 |
Genetics | 5 |
More ▼ |
Source
Learning & Memory | 30 |
Author
Publication Type
Journal Articles | 30 |
Reports - Research | 25 |
Reports - Evaluative | 4 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Costa, Renan M.; Baxter, Douglas A.; Byrne, John H. – Learning & Memory, 2020
Operant reward learning of feeding behavior in "Aplysia" increases the frequency and regularity of biting, as well as biases buccal motor patterns (BMPs) toward ingestion-like BMPs (iBMPs). The engram underlying this memory comprises cells that are part of a central pattern generating (CPG) circuit and includes increases in the intrinsic…
Descriptors: Memory, Brain Hemisphere Functions, Neurological Organization, Operant Conditioning
Fraser, Kurt M.; Janak, Patricia H. – Learning & Memory, 2019
The context in which reward-paired cues are encountered can resolve ambiguity and set the occasion for appropriate reward-seeking. The psychological processes by which contexts regulate reward-seeking remain unclear as contexts are diffuse and difficult to isolate from other stimuli. To overcome this, we modeled a context as a phasic and discrete…
Descriptors: Rewards, Animals, Cues, Cognitive Processes
Vorster, Albrecht P. A.; Born, Jan – Learning & Memory, 2017
Sleep supports memory consolidation as shown in mammals and invertebrates such as bees and "Drosophila." Here, we show that sleep's memory function is preserved in "Aplysia californica" with an even simpler nervous system. Animals performed on an inhibitory conditioning task ("learning that a food is inedible") three…
Descriptors: Sleep, Inhibition, Operant Conditioning, Memory
Matell, Matthew S.; Della Valle, Rebecca B. – Learning & Memory, 2018
Presentation of a previously trained Pavlovian conditioned stimulus while an organism is engaged in operant responding can moderate the rate of responding, a phenomenon known as Pavlovian-to-instrumental transfer. Although it is well known that Pavlovian contingencies will generate conditioned behavior that is temporally organized with respect to…
Descriptors: Operant Conditioning, Experiments, Animals, Time
Marchal, Paul; Villar, Maria Eugenia; Geng, Haiyang; Arrufat, Patrick; Combe, Maud; Viola, Haydée; Massou, Isabelle; Giurfa, Martin – Learning & Memory, 2019
Honeybees are a standard model for the study of appetitive learning and memory. Yet, fewer attempts have been performed to characterize aversive learning and memory in this insect and uncover its molecular underpinnings. Here, we took advantage of the positive phototactic behavior of bees kept away from the hive in a dark environment and…
Descriptors: Inhibition, Learning Processes, Memory, Molecular Structure
Nieto, Javier; Uengoer, Metin; Bernal-Gamboa, Rodolfo – Learning & Memory, 2017
One experiment with rats explored whether an extinction-cue prevents the recovery of extinguished lever-pressing responses. Initially, rats were trained to perform one instrumental response (R1) for food in Context A, and a different instrumental response (R2) in Context B. Then, responses were extinguished each in the alternate context (R1 in…
Descriptors: Cues, Animals, Experiments, Learning Processes
Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C. – Learning & Memory, 2017
We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…
Descriptors: Memory, Biochemistry, Brain Hemisphere Functions, Role
Davies, Don A.; Hurtubise, Jessica L.; Greba, Quentin; Howland, John G. – Learning & Memory, 2017
The trial-unique, delayed nonmatching-to-location (TUNL) task is a recently developed behavioral task that measures spatial working memory and a form of pattern separation in touchscreen-equipped operant conditioning chambers. Limited information exists regarding the neurotransmitters and neural substrates involved in the task. The present…
Descriptors: Brain Hemisphere Functions, Brain, Short Term Memory, Neurological Organization
Jean-Richard-dit-Bressel , Philip; McNally, Gavan P. – Learning & Memory, 2016
Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral…
Descriptors: Human Body, Brain, Lateral Dominance, Brain Hemisphere Functions
Jones, Carolyn E.; Monfils, Marie-H. – Learning & Memory, 2016
Traumatic experiences early in life can contribute to the development of mood and anxiety disorders that manifest during adolescence and young adulthood. In young rats exposed to acute fear or stress, alterations in neural development can lead to enduring behavioral abnormalities. Here, we used a modified extinction intervention…
Descriptors: Adolescents, Fear, Juvenile Justice, Classical Conditioning
Fernando, Anushka B. P.; Urcelay, Gonzalo P.; Mar, Adam C.; Dickinson, Anthony; Robbins, Trevor W. – Learning & Memory, 2014
Safety signals provide "relief" through predicting the absence of an aversive event. At issue is whether these signals also act as instrumental reinforcers. Four experiments were conducted using a free-operant lever-press avoidance paradigm in which each press avoided shock and was followed by the presentation of a 5-sec auditory safety…
Descriptors: Reinforcement, Operant Conditioning, Safety, Anxiety
Bedecarrats, Alexis; Cornet, Charles; Simmers, John; Nargeot, Romuald – Learning & Memory, 2013
Feeding in "Aplysia" provides an amenable model system for analyzing the neuronal substrates of motivated behavior and its adaptability by associative reward learning and neuromodulation. Among such learning processes, appetitive operant conditioning that leads to a compulsive-like expression of feeding actions is known to be associated…
Descriptors: Animals, Animal Behavior, Eating Habits, Associative Learning
Jurado-Parras, M. Teresa; Gruart, Agnes; Delgado-Garcia, Jose M. – Learning & Memory, 2012
The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by…
Descriptors: Animals, Observational Learning, Brain, Stimulation
Valente, Andre; Huang, Kuo-Hua; Portugues, Ruben; Engert, Florian – Learning & Memory, 2012
The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the…
Descriptors: Classical Conditioning, Operant Conditioning, Learning, Animals
Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey – Learning & Memory, 2011
While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…
Descriptors: Rewards, Classical Conditioning, Behavior Modification, Operant Conditioning
Previous Page | Next Page »
Pages: 1 | 2