NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Grebenev, I. V.; Kazarin, P. V. – Physics Education, 2022
The article describes a methodology for studying Fresnel diffraction with the active involvement of students in discussing the results of a demonstration experiment. To create a clearly visible model of Fresnel zones, a centimeter radio wave range was chosen, in which the first zone is about 10 cm in size. This makes visible the created…
Descriptors: Physics, Science Instruction, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Aneta Gacovska Barandovska; Boce Mitrevski; Lambe Barandovski – International Journal of Mathematical Education in Science and Technology, 2023
Problem-solving is an essential part of teaching, learning, and assessment of physics and mathematics. The continuing educational reforms have a deep impact on everyday teaching as well as working with talented students. In the Macedonian educational system, the curricula do not explicitly point out the connection between mathematics and physics,…
Descriptors: Problem Solving, Geometry, Mathematics Instruction, Optics
Peer reviewed Peer reviewed
Direct linkDirect link
Özdemir, Erdogan; Coramik, Mustafa – Physics Education, 2022
It is often necessary to enrich the teaching environment in order for students to learn optics in depth and to interpret the real optical situations with the information they have learned. In this study, a virtual teaching environment was developed using by Algodoo, a 2D simulation software. An eye model was created in order to explain the…
Descriptors: Light, Physics, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Igoe, Damien; Boucher, Nicholas; Clark, Iain; Parisi, Alfio; Downs, Nathan – Australian Mathematics Teacher, 2018
This article proposes a practical method of teaching the addition of unit fractions using a series of mirror equation experiments.
Descriptors: Fractions, Addition, Equations (Mathematics), Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Safadi, Rafi'; Saadi, Sheren – Research in Science Education, 2021
Self-diagnosis activities require students to self-diagnose their solutions to problems they solved on their own by detecting and explaining their errors. Worked examples, a step-by-step demonstration of how to solve a problem, are often used to support students in self-diagnosis activities. However, studies indicate that students often fail to…
Descriptors: Self Evaluation (Individuals), Student Evaluation, Problem Solving, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Perdana, Riki; Jumadi, Jumadi; Rosana, Dadan – International Journal on Social and Education Sciences, 2019
This study was conducted in order to analyze the relation between analytical thinking skill and scientific argumentation in physics learning. The study was conducted with the interactive CK 12 simulation about optics. The sample of the study consists of 28 randomly selected students in Yogyakarta, Indonesia. The data was collected using pre and…
Descriptors: Logical Thinking, Thinking Skills, Science Process Skills, Persuasive Discourse
Peer reviewed Peer reviewed
Direct linkDirect link
Chuasontia, Itsarapong; Sirirat, Tanita – Physics Education, 2021
This research aimed to design an instructional module to teach light diffraction by a grating to secondary students applying a science, technology, engineering, and mathematics (STEM)-integrated approach. Based on this approach, instructional management integrated the disciplines of physics and mathematics with engineering design process…
Descriptors: Science Instruction, Light, STEM Education, Grade 11
Peer reviewed Peer reviewed
Direct linkDirect link
Ceuppens, S.; Deprez, J.; Dehaene, W.; De Cock, M. – Physics Education, 2018
To improve the teaching and learning materials for a curriculum it is important to incorporate the findings from educational research. In light of this, we present creative exercises and experiments to elicit, confront and resolve misconceptions in geometrical optics. Since ray diagrams can be both the cause and the solution for many…
Descriptors: Misconceptions, Optics, Creative Activities, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Ribeiro, Jair Lúcio Prados – Physics Teacher, 2015
Our high school optics course finishes with an assignment that students usually appreciate. They must take pictures of everyday situations representing optical phenomena such as reflection, refraction, or dispersion, and post them on Instagram. When the photos were presented to the class, one student revealed an intriguing photo, similar to Fig.…
Descriptors: Optics, Light, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Ortiz, Enrique – International Journal for Mathematics Teaching and Learning, 2014
Students start to memorize arithmetic facts from early elementary school mathematics activities. Their fluency or lack of fluency with these facts could affect their efforts as they carry out mental calculations as adults. This study investigated participants' levels of brain activation and possible reasons for these levels as they solved…
Descriptors: Brain Hemisphere Functions, Arithmetic, Problem Solving, Measurement Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Mihas, Pavlos – Physics Education, 2012
Fermat's principle is considered as a unifying concept. It is usually presented erroneously as a "least time principle". In this paper we present some software that shows cases of maxima and minima and the application of Fermat's principle to the problem of focusing in lenses. (Contains 12 figures.)
Descriptors: Problem Solving, Computer Software, Scientific Principles, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Chu, Hye-Eun; Treagust, David F. – Journal of Science Education and Technology, 2014
This study focuses on elucidating and explaining reasons for the stability of and interrelationships between students' conceptions about "Light Propagation" and "Visibility of Objects" using contextualized questions across 3 years of secondary schooling from Years 7 to 9. In a large-scale quantitative study involving 1,233…
Descriptors: Optics, Secondary School Students, Secondary School Science, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Suppapittayaporn, Decha; Panijpan, Bhinyo; Emarat, Narumon – Physics Teacher, 2010
After learning how to trace the principal rays [Fig. 1(i)] through a thin lens in order to form the image in the conventional way, students sometimes ask whether it is possible to use other rays emanating from the object to form exactly the same image--for example, the two arbitrary rays shown in Fig. 1(ii). The answer is a definite yes, and this…
Descriptors: Light, Problem Solving, Scientific Concepts, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bhattacharya, Kolahal – European Journal of Physics, 2011
We show that in the grounded conducting sphere image problem, all the necessary information about the image charge can be found from a mirror equation and a magnification formula. Then, we propose a method to solve the image problem for an extended charge distribution near a grounded conducting sphere. (Contains 4 figures.)
Descriptors: Optics, Methods, Physics, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gojkošek, Mihael; Sliško, Josip; Planinšic, Gorazd – Center for Educational Policy Studies Journal, 2013
The transfer of knowledge is considered to be a fundamental goal of education; therefore, knowing and understanding the conditions that influence the efficiency of the transfer from learning activity to problem solving play a decisive role in the improvement of science education. In this article, the results of a study of 196 high school students'…
Descriptors: Foreign Countries, Learning Activities, Student Improvement, Skill Development
Previous Page | Next Page »
Pages: 1  |  2  |  3