NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yoneoka, Daisuke; Omae, Katsuhiro; Henmi, Masayuki; Eguchi, Shinto – Research Synthesis Methods, 2023
The number of clinical prediction models sharing the same prediction task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these prediction models have not been sufficiently studied, particularly in the context of meta-analysis settings where only summary statistics are available. In…
Descriptors: Prediction, Task Analysis, Medical Research, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Jennifer L. Proper; Haitao Chu; Purvi Prajapati; Michael D. Sonksen; Thomas A. Murray – Research Synthesis Methods, 2024
Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not…
Descriptors: Network Analysis, Meta Analysis, Prediction, Drug Therapy
Peer reviewed Peer reviewed
Direct linkDirect link
Thom, Howard; López-López, José A.; Welton, Nicky J. – Research Synthesis Methods, 2020
This paper considers the problem in aggregate data meta-analysis of studies reporting multiple competing binary outcomes and of studies using different summary formats for those outcomes. For example, some may report numbers of patients with at least one of each outcome while others may report the total number of such outcomes. We develop a shared…
Descriptors: Risk, Models, Meta Analysis, Patients
Sophie Litschwartz; Luke Miratrix – Annenberg Institute for School Reform at Brown University, 2021
In multisite experiments, we can quantify treatment effect variation with the cross-site treatment effect variance. However, there is no standard method for estimating cross-site treatment effect variance in multisite regression discontinuity designs (RDD). This research rectifies this gap in the literature by systematically exploring and…
Descriptors: Design, High Schools, Exit Examinations, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Papadimitropoulou, Katerina; Stijnen, Theo; Riley, Richard D.; Dekkers, Olaf M.; Cessie, Saskia – Research Synthesis Methods, 2020
Meta-analysis of individual participant data (IPD) is considered the "gold-standard" for synthesizing clinical study evidence. However, gaining access to IPD can be a laborious task (if possible at all) and in practice only summary (aggregate) data are commonly available. In this work we focus on meta-analytic approaches of comparative…
Descriptors: Meta Analysis, Correlation, Scores, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Gosho, Masahiko; Ishii, Ryota; Oba, Koji; Furukawa, Toshi A. – Research Synthesis Methods, 2020
Network meta-analysis has been gaining prominence as an evidence synthesis method that enables the comprehensive synthesis and simultaneous comparison of multiple treatments. In many network meta-analyses, some of the constituent studies may have markedly different characteristics from the others, and may be influential enough to change the…
Descriptors: Networks, Meta Analysis, Evidence, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Aert, Robbie C. M.; Jackson, Dan – Research Synthesis Methods, 2019
The Hartung-Knapp method for random-effects meta-analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more conventional one when making inferences about the…
Descriptors: Meta Analysis, Least Squares Statistics, Inferences, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan; Turner, Rebecca – Research Synthesis Methods, 2017
One of the reasons for the popularity of meta-analysis is the notion that these analyses will possess more power to detect effects than individual studies. This is inevitably the case under a fixed-effect model. However, the inclusion of the between-study variance in the random-effects model, and the need to estimate this parameter, can have…
Descriptors: Meta Analysis, Databases, Medical Research, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Kontopantelis, Evangelos – Research Synthesis Methods, 2018
Background: Individual patient data (IPD) meta-analysis allows for the exploration of heterogeneity and can identify subgroups that most benefit from an intervention (or exposure), much more successfully than meta-analysis of aggregate data. One-stage or two-stage IPD meta-analysis is possible, with the former using mixed-effects regression models…
Descriptors: Patients, Medical Research, Meta Analysis, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Freeman, S. C.; Fisher, D.; Tierney, J. F.; Carpenter, J. R. – Research Synthesis Methods, 2018
Background: Stratified medicine seeks to identify patients most likely to respond to treatment. Individual participant data (IPD) network meta-analysis (NMA) models have greater power than individual trials to identify treatment-covariate interactions (TCIs). Treatment-covariate interactions contain "within" and "across" trial…
Descriptors: Medical Research, Patients, Outcomes of Treatment, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan; Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose – Research Synthesis Methods, 2017
Network meta-analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta-analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between-study heterogeneity. Models for network meta-analysis with random…
Descriptors: Meta Analysis, Network Analysis, Comparative Analysis, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Mawdsley, David; Higgins, Julian P. T.; Sutton, Alex J.; Abrams, Keith R. – Research Synthesis Methods, 2017
In meta-analysis, the random-effects model is often used to account for heterogeneity. The model assumes that heterogeneity has an additive effect on the variance of effect sizes. An alternative model, which assumes multiplicative heterogeneity, has been little used in the medical statistics community, but is widely used by particle physicists. In…
Descriptors: Databases, Meta Analysis, Goodness of Fit, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Fanshawe, Thomas R.; Shaw, Luke F.; Spence, Graeme T. – Research Synthesis Methods, 2017
Introduction: Previous studies suggest that many systematic reviews contain meta-analyses that display temporal trends, such as the first study's result being more extreme than later studies' or a drift in the pooled estimate. We assessed the extent and characteristics of temporal trends using all Cochrane intervention reports published 2008-2012.…
Descriptors: Meta Analysis, Intervention, Databases, Medical Research
Peer reviewed Peer reviewed
Direct linkDirect link
Béliveau, Audrey; Goring, Sarah; Platt, Robert W.; Gustafson, Paul – Research Synthesis Methods, 2017
In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification.…
Descriptors: Risk, Network Analysis, Meta Analysis, Outcomes of Treatment
Previous Page | Next Page »
Pages: 1  |  2