NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 95 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Albuquerque, Maria Luiza F. Q.; Lopes, Charlie Silva; da Silveira, Denis Silva – Journal of Education for Business, 2023
Abstraction in business processes (BP) modeling arises from the recognition of similarities to the detriment of its differences. However, teaching modeling to beginning students in the context of process management is a hard task to perform, given the high level of abstraction required for these students to develop. This paper uses BP fragments to…
Descriptors: Business Administration Education, Models, Pattern Recognition, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Emerson, Samantha N.; Conway, Christopher M. – Cognitive Science, 2023
There are two main approaches to how statistical patterns are extracted from sequences: The transitional probability approach proposes that statistical learning occurs through the computation of probabilities between items in a sequence. The chunking approach, including models such as PARSER and TRACX, proposes that units are extracted as chunks.…
Descriptors: Statistics Education, Learning Processes, Learning Theories, Pattern Recognition
Peer reviewed Peer reviewed
Direct linkDirect link
An, Weihua – Sociological Methods & Research, 2023
In this article, I present a new multivariate regression model for analyzing outcomes with network dependence. The model is capable to account for two types of outcome dependence including the mean dependence that allows the outcome to depend on selected features of a known dependence network and the error dependence that allows the outcome to be…
Descriptors: Multivariate Analysis, Regression (Statistics), Models, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Michelle Pauley Murphy; Woei Hung – TechTrends: Linking Research and Practice to Improve Learning, 2024
Constructing a consensus problem space from extensive qualitative data for an ill-structured real-life problem and expressing the result to a broader audience is challenging. To effectively communicate a complex problem space, visualization of that problem space must elucidate inter-causal relationships among the problem variables. In this…
Descriptors: Information Retrieval, Data Analysis, Pattern Recognition, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Dmitrij Zatuchin – Discover Education, 2024
This study investigates the application of the SECI model of knowledge dimensions in the design and execution of educational courses in "Innovation and Digitization Management" and "Data-Based Decision Making" microdegrees, developed within the rapidly evolving educational landscape of 2023 and 2024. The research incorporates a…
Descriptors: Microcredentials, Course Content, Pattern Recognition, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Hu, Mingjia; Nosofsky, Robert M. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2022
In a novel version of the classic dot-pattern prototype-distortion paradigm of category learning, Homa et al. (2019) tested a condition in which individual training instances never repeated, and observed results that they claimed severely challenged exemplar models of classification and recognition. Among the results was a dissociation in which…
Descriptors: Classification, Recognition (Psychology), Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Gkontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze, and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Tonghui – Journal of Educators Online, 2023
The early detection of students' academic performance or final grades helps instructors prepare their online courses. In the Open University Learning Analytics Dataset, I found many online students clicked the course materials before the first day of class. This study aims to investigate how data mining models can use this student interaction data…
Descriptors: College Students, Online Courses, Academic Achievement, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Costa, Stella F.; Diniz, Michael M. – Education and Information Technologies, 2022
The large rates of students' failure is a very frequent problem in undergraduate courses, being even more evident in exact sciences. Pointing out the reasons of such problem is a paramount research topic, though not an easy task. An alternative is to use Educational Data Mining techniques (EDM), which enables one to convert data from educational…
Descriptors: Prediction, Undergraduate Students, Mathematics Education, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Poitras, Eric; Butcher, Kirsten R.; Orr, Matthew; Hudson, Michelle A.; Larson, Madlyn – Interactive Learning Environments, 2022
This study mined student interactions with visual representations as a means to automate assessment of learning in a complex, inquiry-based learning environment. Log trace data of 143 middle school students' interactions with an interactive map in Research Quest (an inquiry-based, online learning environment) were analyzed. Students used the…
Descriptors: Middle School Students, Electronic Learning, Maps, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chung, Cheng-Yu; Hsiao, I-Han – International Educational Data Mining Society, 2021
The distributed practice effect suggests that students retain learning content better when they pace their practice over time. The key factors are practice dosage (intensity) and timing (when to practice and how in between). Inspired by the thriving development of image recognition, this study adopts one of the successful techniques,…
Descriptors: Models, Drills (Practice), Pacing, Computer Uses in Education
Lyniesha Chanell Wright – ProQuest LLC, 2020
Effectively mastering organic chemistry means having the ability to recognize structural patterns, identify properties or behaviors as a result of patterns, manipulate and transform representations, and predict future outcomes. Often students rely on rote memorization of seemingly disconnected information instead of developing a sound…
Descriptors: Organic Chemistry, Science Instruction, Visualization, Models
Peer reviewed Peer reviewed
Direct linkDirect link
De Nóbrega, José Renato – Teaching Statistics: An International Journal for Teachers, 2017
A strategy to facilitate understanding of spatial randomness is described, using student activities developed in sequence: looking at spatial patterns, simulating approximate spatial randomness using a grid of equally-likely squares, using binomial probabilities for approximations and predictions and then comparing with given Poisson…
Descriptors: Statistical Analysis, Sequential Approach, Pattern Recognition, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cerón-Figueroa, Sergio; López-Yáñez, Itzamá; Villuendas-Rey, Yenny; Camacho-Nieto, Oscar; Aldape-Pérez, Mario; Yáñez-Márquez, Cornelio – International Review of Research in Open and Distributed Learning, 2017
The present work describes an original associative model of pattern classification and its application to align different ontologies containing Learning Objects (LOs), which are in turn related to Open and Distance Learning (ODL) educative content. The problem of aligning ontologies is known as Ontology Matching Problem (OMP), whose solution is…
Descriptors: Open Education, Distance Education, Classification, Metadata
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7