NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 108 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Grebenev, Igor V.; Kazarin, Petr V.; Lebedeva, Olga V. – Physics Education, 2022
The article describes a new version of a demonstration experiment for the Maxwell distribution. In the first part students analyse the applicability of the Gaussian distribution to the projection of the particle velocities in the suggested experiment. Further, students observe two-dimensional distribution of particles by the modulus of velocity in…
Descriptors: Science Instruction, Science Experiments, Scientific Concepts, Mathematical Formulas
Peer reviewed Peer reviewed
Direct linkDirect link
Montgomery, Jason M.; Mazziotti, David A. – Journal of Chemical Education, 2020
An introduction to the Quantum Chemistry Package (QCP), implemented in the computer algebra system Maple, is presented. The QCP combines sophisticated electronic structure methods and Maple's easy-to-use graphical interface to enable computation and visualization of the electronic energies and properties of molecules. Here we describe how the QCP…
Descriptors: Chemistry, Physics, Computation, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Johnstone, Erik V.; Yates, Mary Anne; Poineau, Frederic; Sattelberger, Alfred P.; Czerwinski, Kenneth R. – Journal of Chemical Education, 2017
The radioactive nature of technetium is discussed using a combination of introductory nuclear physics concepts and empirical trends observed in the chart of the nuclides and the periodic table of the elements. Trends such as the enhanced stability of nucleon pairs, magic numbers, and Mattauch's rule are described. The concepts of nuclear binding…
Descriptors: Physics, Molecular Structure, Introductory Courses, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Ekkens, Tom – Physics Teacher, 2015
Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…
Descriptors: Laboratory Equipment, Physics, Science Instruction, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Prytz, Kjell – Physics Teacher, 2016
It will be demonstrated how the reflection law may be derived on an atomic basis using the plane wave approximation together with Huygens' principle. The model utilized is based on the electric dipole character of matter originating from its molecular constituents. This approach is not new but has, since it was first introduced by Ewald and Oseen…
Descriptors: Scientific Concepts, Scientific Principles, Molecular Structure, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Becker, Nicole; Noyes, Keenan; Cooper, Melanie – Journal of Chemical Education, 2016
Characterizing how students construct causal mechanistic explanations for chemical phenomena can provide us with important insights into the ways that students develop understanding of chemistry concepts. Here, we present two qualitative studies of undergraduate general chemistry students' reasoning about the causes of London dispersion forces in…
Descriptors: Chemistry, Science Instruction, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Brom, Joseph M. – Journal of Chemical Education, 2017
The concept of wave-particle duality in quantum theory is difficult to grasp because it attributes particle-like properties to classical waves and wave-like properties to classical particles. There seems to be an inconsistency involved with the notion that particle-like or wave-like attributes depend on how you look at an entity. The concept comes…
Descriptors: Chemistry, Science Instruction, Measurement Techniques, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Velentzas, Athanasios – Physics Teacher, 2014
Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such…
Descriptors: Science Instruction, Science Experiments, Physics, Light
Peer reviewed Peer reviewed
Direct linkDirect link
Adamides, E.; Kavadjiklis, A.; Koutroubas, S.K.; Moshonas, N.; Tzedakis, A.; Yiasemides, K. – Physics Education, 2014
In continuation of our investigation into the buildup phenomenon appearing in gamma ray attenuation measurements in laboratory experiments we study the dependence of the buildup factor on the area of the absorber in an effort to reduce the buildup of photons. Detailed measurements are performed for up to two mean free paths of [superscript 60]Co…
Descriptors: Science Instruction, Science Laboratories, Laboratory Experiments, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Chapon, A.; Gibelin, J.; Lopez, O.; Cussol, D.; Durand, D.; Desrues, Ph.; de Préaumont, H. Franck; Lemière, Y.; Perronnel, J.; Steckmeyer, J. C. – Physics Education, 2015
The Billotron is a device designed and built by the LPC Caen to illustrate the methods with which physicists are able to study the basic structure of matter, in particular the nucleus of the atom.
Descriptors: Science Instruction, Molecular Structure, Physics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, John; Skinner, Stephen; Stewart, Gay – Physics Teacher, 2013
The leaf electroscope is a common piece of demonstration equipment found in many high school and introductory college physics laboratories. Its simplicity allows a compelling demonstration of electrostatic forces, and its versatility makes it useful in the demonstration of a number of physical phenomena. The electroscope has a long history; a…
Descriptors: Science Instruction, Laboratory Equipment, College Science, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Kraftmakher, Yaakov – Physics Education, 2013
Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.
Descriptors: Science Instruction, Physics, Molecular Structure, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Hnizdo, V. – European Journal of Physics, 2012
In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…
Descriptors: Quantum Mechanics, Motion, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ghosh, Supriya; Dixit, Mayank Kumar; Bhattacharyya, S. P.; Tembe, B. L. – Journal of Chemical Education, 2013
Franck-Condon factors (FCFs) play a crucial role in determining the intensities of the vibrational bands in electronic transitions. In this article, a relatively simple method to calculate the FCFs is illustrated. An algorithm for the Fourier Grid Hamiltonian (FGH) method for computing the vibrational wave functions and the corresponding energy…
Descriptors: Computation, Mathematics, Electronics, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Beau, Mathieu – European Journal of Physics, 2012
In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.…
Descriptors: Quantum Mechanics, Physics, Science Instruction, Mathematical Formulas
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8