Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 10 |
Descriptor
Computer Oriented Programs | 44 |
Physics | 44 |
Science Experiments | 44 |
Science Education | 34 |
College Science | 28 |
Higher Education | 26 |
Microcomputers | 22 |
Science Instruction | 19 |
Secondary School Science | 16 |
Motion | 10 |
Science Equipment | 9 |
More ▼ |
Source
Author
Nicklin, R. C. | 2 |
Shakur, Asif | 2 |
Ahl, David H. | 1 |
Arnone, Stefano | 1 |
Atkinson, P. A. | 1 |
Bates, P. A. | 1 |
Binz, Steven | 1 |
Carvalho, Paulo Simeão | 1 |
Cohen, Bruce I. | 1 |
Crandall, A. Jared | 1 |
Creutz, Michael | 1 |
More ▼ |
Publication Type
Education Level
Secondary Education | 2 |
Elementary Education | 1 |
Grade 8 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Practitioners | 12 |
Teachers | 10 |
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shakur, Asif; Binz, Steven – Physics Teacher, 2021
The use of smartphones in experimental physics is by now widely accepted and documented. PASCO scientific's Smart Cart, in combination with student-owned smartphones and free apps, has opened a new universe of low-cost experiments that have traditionally required cumbersome and expensive equipment. In this paper, we demonstrate the simplicity,…
Descriptors: Handheld Devices, Science Experiments, Physics, Computer Oriented Programs
Shakur, Asif; Valliant, Benjamin – Physics Teacher, 2020
The use of smartphones in experimental physics is by now widely accepted and documented. PASCO scientific's smart cart, in combination with student-owned smartphones and free apps, has opened up a new universe of low-cost experiments that have traditionally required cumbersome and expensive equipment. In this paper we demonstrate the simplicity,…
Descriptors: Science Instruction, Physics, Telecommunications, Handheld Devices
Hawley, Scott H.; McClain, Robert E., Jr. – Physics Teacher, 2018
When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a…
Descriptors: Physics, Acoustics, Visualization, Telecommunications
Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo – Physics Education, 2017
The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo's birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo's celebrated experiments on the uniformly accelerated motion, as reported on in "Discourses and Mathematical Demonstrations Relating to Two New…
Descriptors: Science Instruction, Physics, Science Experiments, Motion
Wisman, Raymond F.; Spahn, Gabriel; Forinash, Kyle – Physics Education, 2018
Data collection is a fundamental skill in science education, one that students generally practice in a controlled setting using equipment only available in the classroom laboratory. However, using smartphones with their built-in sensors and often free apps, many fundamental experiments can be performed outside the laboratory. Taking advantage of…
Descriptors: Science Instruction, Science Process Skills, Data Collection, Telecommunications
Vollmer, Michael; Möllmann, Klaus-Peter – Physics Education, 2018
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s[superscript -1], allowing us to study transient physics phenomena happening…
Descriptors: Physics, Science Education, Motion, Time
Hergemöller, Timo; Laumann, Daniel – Physics Teacher, 2017
Today smartphones and tablets do not merely pervade our daily life, but also play a major role in STEM education in general, and in experimental investigations in particular. Enabling teachers and students to make use of these new techniques in physics lessons requires supplying capable and affordable applications. Our article presents the…
Descriptors: Handheld Devices, Telecommunications, Visual Aids, Laboratory Equipment
Davies, Gary B. – Physics Education, 2017
Carrying out classroom experiments that demonstrate Boyle's law and Gay-Lussac's law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow…
Descriptors: Science Instruction, Science Experiments, Physics, Educational Technology
Carvalho, Paulo Simeão; Hahn, Marcelo – Physics Teacher, 2016
The result of additive colors is always fascinating to young students. When we teach this topic to 14- to 16-year-old students, they do not usually notice we use maximum light quantities of red (R), green (G), and blue (B) to obtain yellow, magenta, and cyan colors in order to build the well-known additive color diagram of Fig. 1. But how about…
Descriptors: Science Experiments, Teaching Methods, Hands on Science, Color
Kuhn, Jochen; Lukowicz, Paul; Hirth, Michael; Poxrucker, Andreas; Weppner, Jens; Younas, Junaid – IEEE Transactions on Learning Technologies, 2016
Smart Glasses such as Google Glass are mobile computers combining classical Head-Mounted Displays (HMD) with several sensors. Therefore, contact-free, sensor-based experiments can be linked with relating, near-eye presented multiple representations. We will present a first approach on how Smart Glasses can be used as an experimental tool for…
Descriptors: Educational Technology, Technology Uses in Education, Science Experiments, Physics

Millar, R. H.; Underwood, C. I. – School Science Review, 1984
Discusses an easy way of interfacing physics experiments to a microcomputer, providing information on the "analog input port" of a BBC microcomputer. Also describes a capacitor discharge experiment with suggestions for several student activities such as investigating decay curve shapes. Program listing is available from author. (DH)
Descriptors: Computer Oriented Programs, Microcomputers, Physics, Science Education

Nicklin, R. C. – Journal of College Science Teaching, 1985
Microcomputers can record laboratory measurements which human laboratory partners can never collect. Simple, harder, and general-purpose interfaces are discussed, with suggestions for several experiments involving an exercise bike, acceleration, and pendulums. Additional applications with pH meters, spectrophotometers, and chromatographs are also…
Descriptors: College Science, Computer Oriented Programs, Higher Education, Laboratory Procedures

Hodgkinson, J. A. – Physics Education, 1985
The use of a microcomputer as the basis of a multichannel analyzer (MCA) system is described. Principles of microcomputer MCA, choice of microcomputer, input-output port, data display, MCA program, and interrupt routine (with flowchart) are the topic areas considered. (JN)
Descriptors: College Science, Computer Oriented Programs, Computer Software, Higher Education

Creutz, Michael – Physics Today, 1983
Experimentalists in particle physics have long regarded computers as essential components of their apparatus. Theorists are now finding that significant advances in some areas can be accomplished only in partnership with a machine. Needs of experimentalists, interests of theorists, and specialized computers for high-energy experiments are…
Descriptors: College Science, Computer Oriented Programs, Computers, Data Collection

Cohen, Bruce I.; Killeen, John – Physics Today, 1983
Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…
Descriptors: College Science, Computer Oriented Programs, Higher Education, Kinetics