NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baker, Ryan S.; Esbenshade, Lief; Vitale, Jonathan; Karumbaiah, Shamya – Journal of Educational Data Mining, 2023
Predictive analytics methods in education are seeing widespread use and are producing increasingly accurate predictions of students' outcomes. With the increased use of predictive analytics comes increasing concern about fairness for specific subgroups of the population. One approach that has been proposed to increase fairness is using demographic…
Descriptors: Demography, Data Use, Prediction, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Scruggs, Richard; Baker, Ryan S.; Pavlik, Philip I., Jr.; McLaren, Bruce M.; Liu, Ziyang – Educational Technology Research and Development, 2023
Despite considerable advances in knowledge tracing algorithms, educational technologies that use this technology typically continue to use older algorithms, such as Bayesian Knowledge Tracing. One key reason for this is that contemporary knowledge tracing algorithms primarily infer next-problem correctness in the learning system, but do not…
Descriptors: Algorithms, Prediction, Knowledge Level, Video Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Levin, Nathan; Baker, Ryan S.; Nasiar, Nidhi; Fancsali, Stephen; Hutt, Stephen – International Educational Data Mining Society, 2022
Research into "gaming the system" behavior in intelligent tutoring systems (ITS) has been around for almost two decades, and detection has been developed for many ITSs. Machine learning models can detect this behavior in both real-time and in historical data. However, intelligent tutoring system designs often change over time, in terms…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Cheating
Peer reviewed Peer reviewed
Direct linkDirect link
Owen, V. Elizabeth; Baker, Ryan S. – Technology, Knowledge and Learning, 2020
As a digital learning medium, serious games can be powerful, immersive educational vehicles and provide large data streams for understanding player behavior. Educational data mining and learning analytics can effectively leverage big data in this context to heighten insight into student trajectories and behavior profiles. In application of these…
Descriptors: Educational Games, Video Games, Decision Making, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Ocumpaugh, Jaclyn; Ma, Juliana; Andres, Alexandra L.; Bosch, Nigel; Paquette, Luc; Biswas, Gautam; Baker, Ryan S. – International Educational Data Mining Society, 2021
Self-regulated learning (SRL) is a critical 21st -century skill. In this paper, we examine SRL through the lens of the searching, monitoring, assessing, rehearsing, and translating (SMART) schema for learning operations. We use microanalysis to measure SRL behaviors as students interact with a computer-based learning environment, Betty's Brain. We…
Descriptors: Models, Self Control, Learning Strategies, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Slater, Stefan; Baker, Ryan S.; Wang, Yeyu – International Educational Data Mining Society, 2020
Feature engineering, the construction of contextual and relevant features from system log data, is a crucial component of developing robust and interpretable models in educational data mining contexts. The practice of feature engineering depends on domain experts and system developers working in tandem in order to creatively identify actions and…
Descriptors: Data Analysis, Engineering, Classification, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gardner, Josh; Yang, Yuming; Baker, Ryan S.; Brooks, Christopher – International Educational Data Mining Society, 2019
Replication of machine learning experiments can be a useful tool to evaluate how both "modeling" and "experimental design" contribute to experimental results; however, existing replication efforts focus almost entirely on modeling alone. In this work, we conduct a three-part replication case study of a state-of-the-art LSTM…
Descriptors: Online Courses, Large Group Instruction, Prediction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Paquette, Luc; Baker, Ryan S. – Interactive Learning Environments, 2019
Learning analytics research has used both knowledge engineering and machine learning methods to model student behaviors within the context of digital learning environments. In this paper, we compare these two approaches, as well as a hybrid approach combining the two types of methods. We illustrate the strengths of each approach in the context of…
Descriptors: Comparative Analysis, Student Behavior, Models, Case Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karumbaiah, Shamya; Baker, Ryan S.; Shute, Valerie – International Educational Data Mining Society, 2018
Identifying struggling students in real-time provides a virtual learning environment with an opportunity to intervene meaningfully with supports aimed at improving student learning and engagement. In this paper, we present a detailed analysis of quit prediction modeling in students playing a learning game called Physics Playground. From the…
Descriptors: Predictor Variables, Academic Persistence, Educational Games, Play
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Malkiewich, Laura; Baker, Ryan S.; Shute, Valerie; Kai, Shimin; Paquette, Luc – International Educational Data Mining Society, 2016
Educational games have become hugely popular, and educational data mining has been used to predict student performance in the context of these games. However, models built on student behavior in educational games rarely differentiate between the types of problem solving that students employ and fail to address how efficacious student problem…
Descriptors: Classification, Problem Solving, Educational Games, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S. – International Journal of Artificial Intelligence in Education, 2016
The initial vision for intelligent tutoring systems involved powerful, multi-faceted systems that would leverage rich models of students and pedagogies to create complex learning interactions. But the intelligent tutoring systems used at scale today are much simpler. In this article, I present hypotheses on the factors underlying this development,…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Hypothesis Testing, Data Collection
San Pedro, Maria Ofelia Z.; Snow, Erica L.; Baker, Ryan S.; McNamara, Danielle S.; Heffernan, Neil T. – International Educational Data Mining Society, 2015
There is increasing evidence that fine-grained aspects of student performance and interaction within educational software are predictive of long-term learning. Machine learning models have been used to provide assessments of affect, behavior, and cognition based on analyses of system log data, estimating the probability of a student's particular…
Descriptors: Mathematics Tests, Achievement Tests, Middle School Students, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Miller, William L.; Baker, Ryan S.; Rossi, Lisa M. – Technology, Knowledge and Learning, 2014
As students work through online learning systems such as the Reasoning Mind blended learning system, they often are not confined to working within a single educational activity; instead, they work through various different activities such as conceptual instruction, problem-solving items, and fluency-building games. However, most work on assessing…
Descriptors: Problem Solving, Computer Games, Electronic Learning, Blended Learning
Previous Page | Next Page »
Pages: 1  |  2