Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 12 |
Descriptor
Prediction | 12 |
Bayesian Statistics | 9 |
Models | 5 |
Statistical Inference | 4 |
Evidence | 3 |
Experiments | 3 |
Learning | 3 |
Observation | 3 |
Probability | 3 |
Cognitive Processes | 2 |
Comparative Analysis | 2 |
More ▼ |
Source
Cognitive Science | 5 |
Cognition | 3 |
Cognitive Psychology | 1 |
Developmental Psychology | 1 |
Journal of Experimental… | 1 |
Psychological Bulletin | 1 |
Author
Publication Type
Journal Articles | 12 |
Reports - Evaluative | 6 |
Reports - Research | 5 |
Opinion Papers | 2 |
Education Level
Early Childhood Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Preschool Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
The Challenges of Large-Scale, Web-Based Language Datasets: Word Length and Predictability Revisited
Meylan, Stephan C.; Griffiths, Thomas L. – Cognitive Science, 2021
Language research has come to rely heavily on large-scale, web-based datasets. These datasets can present significant methodological challenges, requiring researchers to make a number of decisions about how they are collected, represented, and analyzed. These decisions often concern long-standing challenges in corpus-based language research,…
Descriptors: Data Analysis, Data Collection, Word Frequency, Prediction
Austerweil, Joseph L.; Sanborn, Sophia; Griffiths, Thomas L. – Cognitive Science, 2019
Generalization is a fundamental problem solved by every cognitive system in essentially every domain. Although it is known that how people generalize varies in complex ways depending on the context or domain, it is an open question how people "learn" the appropriate way to generalize for a new context. To understand this capability, we…
Descriptors: Generalization, Logical Thinking, Inferences, Bayesian Statistics
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Griffiths, Thomas L.; Lewandowsky, Stephan; Kalish, Michael L. – Cognitive Science, 2013
Information changes as it is passed from person to person, with this process of cultural transmission allowing the minds of individuals to shape the information that they transmit. We present mathematical models of cultural transmission which predict that the amount of information passed from person to person should affect the rate at which that…
Descriptors: Culture, Information Dissemination, Mathematical Models, Prediction
Griffiths, Thomas L.; Chater, Nick; Norris, Dennis; Pouget, Alexandre – Psychological Bulletin, 2012
Bowers and Davis (2012) criticize Bayesian modelers for telling "just so" stories about cognition and neuroscience. Their criticisms are weakened by not giving an accurate characterization of the motivation behind Bayesian modeling or the ways in which Bayesian models are used and by not evaluating this theoretical framework against specific…
Descriptors: Bayesian Statistics, Psychology, Brain, Models
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Journal of Experimental Psychology: General, 2011
Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…
Descriptors: Bayesian Statistics, Statistical Inference, Models, Prior Learning
Xu, Jing; Griffiths, Thomas L. – Cognitive Psychology, 2010
Many human interactions involve pieces of information being passed from one person to another, raising the question of how this process of information transmission is affected by the cognitive capacities of the agents involved. Bartlett (1932) explored the influence of memory biases on the "serial reproduction" of information, in which one…
Descriptors: Stimuli, Memory, Bayesian Statistics, Prediction
Buchsbaum, Daphna; Gopnik, Alison; Griffiths, Thomas L.; Shafto, Patrick – Cognition, 2011
Children are ubiquitous imitators, but how do they decide which actions to imitate? One possibility is that children rationally combine multiple sources of information about which actions are necessary to cause a particular outcome. For instance, children might learn from contingencies between action sequences and outcomes across repeated…
Descriptors: Evidence, Models, Imitation, Preschool Children
Kemp, Charles; Tenenbaum, Joshua B.; Niyogi, Sourabh; Griffiths, Thomas L. – Cognition, 2010
Concept learning is challenging in part because the meanings of many concepts depend on their relationships to other concepts. Learning these concepts in isolation can be difficult, but we present a model that discovers entire systems of related concepts. These systems can be viewed as simple theories that specify the concepts that exist in a…
Descriptors: Family Relationship, Logical Thinking, Models, Concept Formation
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L. – Cognitive Science, 2008
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Descriptors: Mathematics Education, Concept Formation, Models, Prediction
Schulz, Laura E.; Bonawitz, Elizabeth Baraff; Griffiths, Thomas L. – Developmental Psychology, 2007
Causal learning requires integrating constraints provided by domain-specific theories with domain-general statistical learning. In order to investigate the interaction between these factors, the authors presented preschoolers with stories pitting their existing theories against statistical evidence. Each child heard 2 stories in which 2 candidate…
Descriptors: Inferences, Young Children, Bayesian Statistics, Story Telling
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2007
People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…
Descriptors: Probability, Statistical Inference, Bayesian Statistics, Theories