NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 74 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yumou Wei; Paulo Carvalho; John Stamper – International Educational Data Mining Society, 2025
Educators evaluate student knowledge using knowledge component (KC) models that map assessment questions to KCs. Still, designing KC models for large question banks remains an insurmountable challenge for instructors who need to analyze each question by hand. The growing use of Generative AI in education is expected only to aggravate this chronic…
Descriptors: Artificial Intelligence, Cluster Grouping, Student Evaluation, Test Items
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bogdan Yamkovenko; Charlie A. R. Hogg; Maya Miller-Vedam; Phillip Grimaldi; Walt Wells – International Educational Data Mining Society, 2025
Knowledge tracing (KT) models predict how students will perform on future interactions, given a sequence of prior responses. Modern approaches to KT leverage "deep learning" techniques to produce more accurate predictions, potentially making personalized learning paths more efficacious for learners. Many papers on the topic of KT focus…
Descriptors: Algorithms, Artificial Intelligence, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Williamson; Carolina Valladares Celis; Arathi Sriprakash; Jessica Pykett; Keri Facer – Learning, Media and Technology, 2025
Futures of education are increasingly defined through predictive technologies and methods. We conceptualize 'algorithmic futuring' as the use of data-driven digital methods and predictive infrastructures to anticipate educational futures and animate actions in the present towards their materialization. Specifically, we focus on algorithmic…
Descriptors: Algorithms, Prediction, Investment, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fatma Merve Mustafaoglu; Fatma Alkan – Science Education International, 2025
Recycling waste is essential to mitigate environmental damage caused by human activity. Environmentally responsible behaviors, shaped during early ages, are closely linked to environmental attitudes, as demonstrated by prior research. This study aims to predict middle school students' recycling behaviors using machine learning algorithms. A…
Descriptors: Middle School Students, Recycling, Student Behavior, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Adrianne L. Jenner; Pamela M. Burrage – International Journal of Mathematical Education in Science and Technology, 2024
Mathematics provides us with tools to capture and explain phenomena in everyday biology, even at the nanoscale. The most regularly applied technique to biology is differential equations. In this article, we seek to present how differential equation models of biological phenomena, particularly the flow through ion channels, can be used to motivate…
Descriptors: Cytology, Mathematical Models, Prediction, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Mouna Ben Said; Yessine Hadj Kacem; Abdulmohsen Algarni; Atef Masmoudi – Education and Information Technologies, 2024
In the current educational landscape, where large amounts of data are being produced by institutions, Educational Data Mining (EDM) emerges as a critical discipline that plays a crucial role in extracting knowledge from this data to help academic policymakers make decisions. EDM has a primary focus on predicting students' academic performance.…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Kylie L. Anglin – Annenberg Institute for School Reform at Brown University, 2025
Since 2018, institutions of higher education have been aware of the "enrollment cliff" which refers to expected declines in future enrollment. This paper attempts to describe how prepared institutions in Ohio are for this future by looking at trends leading up to the anticipated decline. Using IPEDS data from 2012-2022, we analyze trends…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Daniele Di Mitri; Maurizio Gabbrielli; Olivia Levrini – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing is a well-known problem in AI for education, consisting of monitoring how the knowledge state of students changes during the learning process and accurately predicting their performance in future exercises. In recent years, many advances have been made thanks to various machine learning and deep learning techniques. Despite their…
Descriptors: Artificial Intelligence, Prior Learning, Knowledge Management, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Jessa Henderson – ProQuest LLC, 2024
Algorithms may be better at prediction than humans in a variety of contexts, but they are not perfect. A deeper understanding of the ways in which educators use and question algorithmic advice within their professional domain is needed. Educators are a particularly unique professional group, in comparison with the other groups studied in the…
Descriptors: Algorithms, Literacy, High School Teachers, Science Teachers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jade Mai Cock; Hugues Saltini; Haoyu Sheng; Riya Ranjan; Richard Davis; Tanja Käser – International Educational Data Mining Society, 2024
Predictive models play a pivotal role in education by aiding learning, teaching, and assessment processes. However, they have the potential to perpetuate educational inequalities through algorithmic biases. This paper investigates how behavioral differences across demographic groups of different sizes propagate through the student success modeling…
Descriptors: Demography, Statistical Bias, Algorithms, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Harikesh Singh; Li-Minn Ang; Dipak Paudyal; Mauricio Acuna; Prashant Kumar Srivastava; Sanjeev Kumar Srivastava – Technology, Knowledge and Learning, 2025
Wildfires pose significant environmental threats in Australia, impacting ecosystems, human lives, and property. This review article provides a comprehensive analysis of various empirical and dynamic wildfire simulators alongside machine learning (ML) techniques employed for wildfire prediction in Australia. The study examines the effectiveness of…
Descriptors: Artificial Intelligence, Computer Software, Computer Simulation, Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5