Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 19 |
Since 2016 (last 10 years) | 20 |
Since 2006 (last 20 years) | 21 |
Descriptor
Learning Analytics | 21 |
Prediction | 21 |
Middle School Students | 9 |
Models | 9 |
Scores | 8 |
Mathematics Tests | 7 |
Teaching Methods | 7 |
Foreign Countries | 6 |
Learning Processes | 6 |
Comparative Analysis | 5 |
Computer Assisted Instruction | 5 |
More ▼ |
Source
Author
Amisha Jindal | 3 |
Ashish Gurung | 3 |
Erin Ottmar | 3 |
Ji-Eun Lee | 3 |
Reilly Norum | 3 |
Sanika Nitin Patki | 3 |
Adjei, Seth A. | 1 |
Baker, Ryan S. J. d. | 1 |
Baron, Patricia | 1 |
Beck, Joseph E. | 1 |
Björn Rudzewitz | 1 |
More ▼ |
Publication Type
Reports - Research | 20 |
Journal Articles | 14 |
Speeches/Meeting Papers | 3 |
Collected Works - Proceedings | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 2 |
National Assessment of… | 1 |
Patterns of Adaptive Learning… | 1 |
What Works Clearinghouse Rating
Nguyen, Andy; Järvelä, Sanna; Rosé, Carolyn; Järvenoja, Hanna; Malmberg, Jonna – British Journal of Educational Technology, 2023
Socially shared regulation contributes to the success of collaborative learning. However, the assessment of socially shared regulation of learning (SSRL) faces several challenges in the effort to increase the understanding of collaborative learning and support outcomes due to the unobservability of the related cognitive and emotional processes.…
Descriptors: Cooperative Learning, Physiology, Arousal Patterns, Cognitive Processes
Yu-Jie Wang; Chang-Lei Gao; Xin-Dong Ye – Education and Information Technologies, 2024
The continuous development of Educational Data Mining (EDM) and Learning Analytics (LA) technologies has provided more effective technical support for accurate early warning and interventions for student academic performance. However, the existing body of research on EDM and LA needs more empirical studies that provide feedback interventions, and…
Descriptors: Precision Teaching, Data Use, Intervention, Educational Improvement
Michos, Konstantinos; Schmitz, Maria-Luisa; Petko, Dominik – Education and Information Technologies, 2023
Since schools increasingly use digital platforms that provide educational data in digital formats, teacher data use, and data literacy have become a focus of educational research. One main challenge is whether teachers use digital data for pedagogical purposes, such as informing their teaching. We conducted a survey study with N = 1059 teachers in…
Descriptors: Secondary School Teachers, Prediction, Data Use, Data Analysis
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Bowers, Alex J.; Zhao, Yihan; Ho, Eric – High School Journal, 2022
Research on data use and school Early Warning Systems (EWS) notes a central practice of researchers and practitioners is to search for patterns in student data to predict outcomes so schools can support success when students experience challenges. Yet, the domain lacks a means to visualize the rich longitudinal data that schools collect. Here, we…
Descriptors: Learning Analytics, Visual Aids, Student Records, Longitudinal Studies
Moon, Jewoong; Ke, Fengfeng; Sokolikj, Zlatko; Dahlstrom-Hakki, Ibrahim – Journal of Learning Analytics, 2022
Using multimodal data fusion techniques, we built and tested prediction models to track middle-school student distress states during educational gameplay. We collected and analyzed 1,145 data instances, sampled from a total of 31 middle-school students' audio- and video-recorded gameplay sessions. We conducted data wrangling with student gameplay…
Descriptors: Learning Analytics, Stress Variables, Educational Games, Middle School Students
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Canto, Natalia Gil; de Oliveira, Marcelo Albuquerque; Veroneze, Gabriela de Mattos – European Journal of Educational Research, 2022
The article aims to develop a machine-learning algorithm that can predict student's graduation in the Industrial Engineering course at the Federal University of Amazonas based on their performance data. The methodology makes use of an information package of 364 students with an admission period between 2007 and 2019, considering characteristics…
Descriptors: Engineering Education, Prediction, Graduation, Industrial Arts
Lezhnina, Olga; Kismihók, Gábor – International Journal of Research & Method in Education, 2022
In our age of big data and growing computational power, versatility in data analysis is important. This study presents a flexible way to combine statistics and machine learning for data analysis of a large-scale educational survey. The authors used statistical and machine learning methods to explore German students' attitudes towards information…
Descriptors: Student Attitudes, Scientific Literacy, Numeracy, Foreign Countries
Yikai Lu; Teresa M. Ober; Cheng Liu; Ying Cheng – Grantee Submission, 2022
Machine learning methods for predictive analytics have great potential for uncovering trends in educational data. However, simple linear models still appear to be most widely used, in part, because of their interpretability. This study aims to address the issues of interpretability of complex machine learning classifiers by conducting feature…
Descriptors: Prediction, Statistics Education, Data Analysis, Learning Analytics
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Bronson Hui; Björn Rudzewitz; Detmar Meurers – Language Learning & Technology, 2023
Interactive digital tools increasingly used for language learning can provide detailed system logs (e.g., number of attempts, responses submitted), and thereby a window into the user's learning processes. To date, SLA researchers have made little use of such data to understand the relationships between learning conditions, processes, and outcomes.…
Descriptors: Computer Assisted Instruction, Second Language Learning, Second Language Instruction, Learning Processes
Previous Page | Next Page »
Pages: 1 | 2