Publication Date
In 2025 | 0 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 96 |
Since 2016 (last 10 years) | 236 |
Since 2006 (last 20 years) | 313 |
Descriptor
Source
Author
Baker, Ryan S. | 12 |
McNamara, Danielle S. | 10 |
Heffernan, Neil T. | 8 |
Morrison, James L. | 8 |
Aleven, Vincent | 6 |
Dascalu, Mihai | 6 |
Townsend, Tony | 6 |
Allen, Laura K. | 5 |
Barnes, Tiffany | 5 |
Brunskill, Emma | 5 |
Gal, Kobi | 5 |
More ▼ |
Publication Type
Education Level
Higher Education | 105 |
Postsecondary Education | 91 |
Secondary Education | 55 |
Elementary Education | 42 |
Middle Schools | 35 |
High Schools | 30 |
Junior High Schools | 28 |
Intermediate Grades | 12 |
Grade 8 | 9 |
Grade 4 | 8 |
Grade 7 | 7 |
More ▼ |
Location
Australia | 22 |
United States | 10 |
Canada | 8 |
Florida | 7 |
Japan | 6 |
Texas | 6 |
France | 5 |
Germany | 5 |
South Korea | 5 |
California | 4 |
China | 4 |
More ▼ |
Laws, Policies, & Programs
Individuals with Disabilities… | 1 |
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Cohausz, Lea – International Educational Data Mining Society, 2022
Despite calls to increase the focus on explainability and interpretability in EDM and, in particular, student success prediction, so that it becomes useful for personalized intervention systems, only few efforts have been undertaken in that direction so far. In this paper, we argue that this is mainly due to the limitations of current Explainable…
Descriptors: Success, Prediction, Social Sciences, Artificial Intelligence
Hoq, Muntasir; Brusilovsky, Peter; Akram, Bita – International Educational Data Mining Society, 2023
Prediction of student performance in introductory programming courses can assist struggling students and improve their persistence. On the other hand, it is important for the prediction to be transparent for the instructor and students to effectively utilize the results of this prediction. Explainable Machine Learning models can effectively help…
Descriptors: Academic Achievement, Prediction, Models, Introductory Courses

Parian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Shiyi Liu; Juan Zheng; Tingting Wang; Zeda Xu; Jie Chao; Shiyan Jiang – AERA Online Paper Repository, 2024
This study introduces a novel approach for predicting student engagement levels in a language-based AI curriculum. The curriculum was integrated into English Language Arts classrooms, in which 106 students from five classes participated five web-based machine learning and text mining modules for 2 weeks. Sentiment and categorical analyses,…
Descriptors: Learner Engagement, Artificial Intelligence, Technology Uses in Education, Language Arts
Olney, Andrew M. – Grantee Submission, 2022
Cloze items are a foundational approach to assessing readability. However, they require human data collection, thus making them impractical in automated metrics. The present study revisits the idea of assessing readability with cloze items and compares human cloze scores and readability judgments with predictions made by T5, a popular deep…
Descriptors: Readability, Cloze Procedure, Scores, Prediction
Qiu, Wei; Supraja, S.; Khong, Andy W. H. – International Educational Data Mining Society, 2022
Predicting student performance in an academic institution is important for detecting at-risk students and administering early-intervention strategies. We propose a new grade prediction model that considers three factors: temporal dynamics of prior courses across previous semesters, short-term performance consistency, and relative performance…
Descriptors: Academic Achievement, Prediction, Grades (Scholastic), Models
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2021
Predicting student problem-solving strategies is a complex problem but one that can significantly impact automated instruction systems since they can adapt or personalize the system to suit the learner. While for small datasets, learning experts may be able to manually analyze data to infer student strategies, for large datasets, this approach is…
Descriptors: Prediction, Problem Solving, Intelligent Tutoring Systems, Learning Strategies
Li, Chenglu; Xing, Wanli; Leite, Walter – Grantee Submission, 2021
To support online learners at a large scale, extensive studies have adopted machine learning (ML) techniques to analyze students' artifacts and predict their learning outcomes automatically. However, limited attention has been paid to the fairness of prediction with ML in educational settings. This study intends to fill the gap by introducing a…
Descriptors: Learning Analytics, Prediction, Models, Electronic Learning
Takashi Kawakami; Akihiko Saeki – Mathematics Education Research Group of Australasia, 2024
This study elaborates on the pivotal roles of mathematical and statistical models in data-driven predictions in an integrated STEM context using the case of Year 4 students: (?) "a descriptive means" to describe the features of trends and variability of data and (?) "an explanatory means" to explain causal relationships behind…
Descriptors: Mathematical Models, Statistical Analysis, Data Use, Prediction
Rohani, Narjes; Gal, Kobi; Gallagher, Michael; Manataki, Areti – International Educational Data Mining Society, 2023
Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is…
Descriptors: Prediction, Academic Achievement, Health Education, Data Science
Levin, Nathan; Baker, Ryan S.; Nasiar, Nidhi; Fancsali, Stephen; Hutt, Stephen – International Educational Data Mining Society, 2022
Research into "gaming the system" behavior in intelligent tutoring systems (ITS) has been around for almost two decades, and detection has been developed for many ITSs. Machine learning models can detect this behavior in both real-time and in historical data. However, intelligent tutoring system designs often change over time, in terms…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Cheating
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Ionita, Remus Florentin; Dascalu, Mihai; Corlatescu, Dragos-Georgian; McNamara, Danielle S – Grantee Submission, 2021
Exploring new or emerging research domains or subdomains can become overwhelming due to the magnitude of available resources and the high speed at which articles are published. As such, a tool that curates the information and underlines central entities, both authors and articles from a given research context, is highly desirable. Starting from…
Descriptors: Prediction, Learning Analytics, Authors, Network Analysis
Verger, Mélina; Lallé, Sébastien; Bouchet, François; Luengo, Vanda – International Educational Data Mining Society, 2023
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against some students and possible harmful long-term…
Descriptors: Prediction, Models, Student Behavior, Academic Achievement
Magooda, Ahmed; Elaraby, Mohamed; Litman, Diane – Grantee Submission, 2021
This paper explores the effect of using multitask learning for abstractive summarization in the context of small training corpora. In particular, we incorporate four different tasks (extractive summarization, language modeling, concept detection, and paraphrase detection) both individually and in combination, with the goal of enhancing the target…
Descriptors: Data Analysis, Synthesis, Documentation, Training